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ABSTRACT

Genevieve Jacques
DAUBECHIES AND QUADRATIC B-SPLINE WAVELETS FOR AUTOMATED

EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE
2004/05

Dr. Robi Polikar
Master of Science in Electrical Engineering

Alzheimer's disease is a neurological disorder characterized by nerve degeneration and

neuronal death. The diagnosis of Alzheimer's disease at an early stage is a major concern

due to the lack of a standard and effective diagnosis procedure available to community

healthcare providers, as well as the increasing numbers of the elderly population affected.

Clinical evaluation, the standard AD diagnostic procedure conducted at major university

hospitals and research clinics, achieves, on average, a positive predictive value of 93%, with

a sensitivity of 83%, specificity of 55% and an overall accuracy of 75%. An effective and

objective tool for early diagnosis of the disease is important to have a meaningful impact on

healthcare. Such a procedure must be inexpensive, non-invasive and available to community

physicians, who often provide the first line of intervention, particularly at the early stages of

the disease.

Studies performed using wavelets or other signal processing methods to analyze EEG

signals in an attempt to find a non-invasive biomarker for Alzheimer's disease have had

varying degrees of success. Two types of wavelets have commonly been used for analyzing

the event-related potentials of EEG signals: Daubechies 4 wavelets and Quadratic B-spline
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wavelets. Analysis was performed using these two types of wavelets and the coefficients

obtained from this analysis were then used with several algorithms for automated

classification. Cross validation was performed with a multilayer perceptron (MLP) neural

network and an ensemble of MLP networks for classification of the coefficients. The

classification algorithms are compared as well as the two types of wavelets. Noting that

different information may be available from two different types of wavelets, a data fusion

method with an ensemble of classifiers was implemented to combine relevant information

and possibly boost performance of the algorithm.

The use of an automated algorithm is a feasible approach for diagnosing AD in a

community health clinic. The accuracy of each method used in this study is similar to that of

a clinical evaluation and as an automated algorithm provides a diagnostic tool for the

detection of AD that can be made available to community physicians.

The results for data fusion indicate that the wavelets are not likely extracting

complementary information from the signals since the combination of these two wavelet

feature sets does not consistently produce a more informed decision than either set

individually. The use of data fusion for combining features is however, a feasible approach to

this classification problem if the chosen feature sets provide complementary information.
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CHAPTER 1

INTRODUCTION

Early diagnosis of Alzheimer's disease (AD) is a major public health issue since it affects

large portions of the elderly population. Clinical evaluation, the standard procedure for

diagnosis of AD, has an overall accuracy of 75%, with a sensitivity of 83%, specificity of

55% and positive predictive value of 93% (for definitions see appendix A) [1]. Unfortu-

nately, this approach requires the expertise of neuropsychologists and is available only at

major research hospitals. There is currently no standard or effective diagnosis procedure

available to community healthcare providers who essentially serve as the first line of in-

tervention for the disease. To have a meaningful impact on healthcare, an effective and

objective procedure for the diagnosis of AD must be inexpensive, non-invasive and

available to community physicians. The goal of this study has been to create an auto-

mated algorithm for the early diagnosis of AD that can be made available to community

health clinics and is as accurate as a clinical evaluation.

Magnetic resonance imaging (MRI), urinalysis, spinal fluids and analysis of elec-

troencephalographic (EEG) signals are among different methods that have been consid-

ered diagnostic tools, however the results remain inconclusive. More recently, several

studies have been performed using wavelets and other signal processing methods to ana-

lyze EEG signals in an attempt to establish a biomarker for AD. These attempts have

shown varying degrees of success. However, the nonstationary nature of such signals

and the ability of wavelets to localize time-frequency information make wavelet analysis

a potentially promising tool. Therefore the diagnostic value of wavelet analysis of EEG
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signals is explored in this study. Two types of-wavelets have been used: Daubechies 4

wavelets and Quadratic B-spline wavelets. The coefficients obtained from this analysis

were then used to train an automated classifier. Cross validation was performed with a

multilayer perceptron (MLP) neural network and an ensemble of MLP networks for clas-

sification of the coefficients. The classification algorithms are compared as well as the

two types of wavelets. Noting that different information may be available from two dif-

ferent types of wavelets and that an ensemble method may perform better than a single

classifier, a data fusion method with an ensemble of classifiers was also implemented to

combine relevant information and boost performance of the algorithm.

1.1 ALZHEIMER'S DISEASE

Alzheimer's disease (AD) is the most common form of dementia, which is associated

with nerve degeneration and neuron death. The disease was first described in 1906 by

German physician Dr. Alois Alzheimer. Although the disease was considered rare at one

time, research has shown that it is the leading cause of dementia, accounting for more

than half of all dementia cases [2, 3]. The early stages of the disease show a person's

recognition of their lost abilities and a demonstration of concern and anxiety due to these

losses. As the disease progresses, problems are developed in attention and concentration

to the point that simple tasks become huge obstacles [4].

Increasing age is the greatest risk factor for the development of AD. Approxi-

mately one in ten individuals over the age of 65 and nearly half of those over 85 are af-

fected [2]. Approximately 4.5 million people in the United States have AD according to

data based on the number of cases detected in an ethnically diverse population sample in

2
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the 2000 U.S. census. By 2050, this number could range from 11.3 to 16 million cases in

the U.S. as more people live to reach their 80's and 90's [2].

1.1.1 BIOLOGICAL ASPECTS OF ALZHEIMER'S DISEASE

As mentioned above, AD is associated with nerve degeneration and neuron death. The

damage of the nerve cells typically begins with cells involved in learning and memory

and then eventually spreads to cells that control every aspect of thinking, judgment, and

behavior. As the disease progresses, the damage reaches the cells that control and coor-

dinate movement.

The specific cause of AD is not clear, however the disease is characterized by the

formation of amyloid plaques and neurofibrillary tangles in the brain. Amyloid plaques

are clumps of protein fragments that accumulate outside of cells. Beta amyloid, a nor-

mally harmless protein, is believed to cause these deposits of plaque that form between

neurons early in the disease process, before neurons begin to die and symptoms develop

[5]. The role of the amyloid deposits as part of the pathology of the disease is uncertain

due to a variant form of the disease which has no amyloid deposits present [3].

Neurofibrillary tangles, on the other hand, are clumps of altered proteins inside

cells, namely the tau protein [2]. In AD, threads oftau protein undergo alterations that

cause them to become twisted forming these tangles. Some researchers believe this may

cause serious damage to neurons, causing them to die [5]. However, the role oftau in

AD has also been questioned since mutations in the tau gene have been linked to a variety

of neurodegenerative diseases other than AD [3].

3
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Other research in effort to identify the cause of the disease has indicated that

about 10% AD cases may be genetic, causing several cases of early-onset forms of Alz-

heimer's disease. Three proteins genetically predisposed to mutation, amyloid precursor

(APP), presenilin 1 (PS1), and presenilin 2 (PS2) can result in the production of amyloid

plaques [3, 5]. The cause of the disease is not necessarily as important as the fact that

the course of the disease remains the same regardless of its cause [6].

1.1.2 DIAGNOSIS

Unfortunately, the only definitive means of diagnosing the disease is via an autopsy, so

there has been substantial effort in finding a method for diagnosing this illness before the

most debilitating stages of the disease set in. The current method for diagnosis is a series

of clinical interviews with the subject and their caregiver, performed by a neuropsy-

chologist. This method is used to determine if there are changes in cognitive status and

basically assesses if the person probably has AD. It is difficult to determine if a person

is suffering from AD, other forms of dementia (i.e. vascular dementia) or if the symptoms

in question are those just associated with normal aging [4]. The positive predictive value

of clinical diagnosis remains around 93%, while there is a sensitivity of 83%, specificity

of 55% and overall accuracy of 75% [7] (See Appendix A for calculation of sensitivity,

specificity and positive predictive value).

There are other methods being considered for diagnosing the illness such as a spi-

nal tap to extract cerebrospinal fluid tau, a known biomarker of AD, however this is a

fairly invasive procedure. Other methods such as magnetic resonance imaging (MRI)

scans which can capture images of the lesions in the brain have also been used but are
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very expensive procedures and not always available. The abnormalities in the brain tend

to disrupt the brain's electrical signals and can be detected through electroencephalo-

graphic (EEG) signals which are obtained in a noninvasive manner and their acquisition

is fairly inexpensive. EEG signals can provide information about the overall integrity of

the cerebral cortex as well as giving evidence of specific disorders [4]. EEG signals are

also more readily available for use in diagnosis and with the use of different processing

techniques for the signals, may prove to provide more accurate results. EEG analysis has

not been used for AD diagnosis, however, this is mainly due to difficulties in distinguish-

ing between EEG changes that could be attributed to AD from those due to normal aging,

other medical illnesses, and other factors associated with physiology [8].

A reliable method for diagnosing this illness early is needed so that medicines

may be administered in a timely fashion, decreasing the chances of the illness progressing

to the latter stages. Although there is currently no cure for Alzheimer's disease, re-

searchers have made progress in developing treatments that may help improve the quality

of life for people with AD, which makes early diagnosis all the more important [5].

1.2 ELECTROENCEPHALOGRAPHY (EEG)

One of the chief methods for determining the specific functions of particular elements of

the nervous system is the analysis of electroencephalographic or EEG signals. EEG sig-

nals represent the electrical activity of the brain as voltage over time and are recorded

using a series of electrodes connected to the scalp. These signals have been used in some

cases to determine illness associated with brain activity, such as epilepsy. Changes in the

brain's electrical activity can reflect changes in cognitive status and therefore one goal of

this study is to determine whether changes in EEG signals reflect changes due to AD [5].

5
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The specific alterations in the EEG signals of AD patients observed in different experi-

ments will be outlined in section 1.2.4.

Richard Caton (1875) was the first to observe the EEG phenomenon with his

work involving rabbits and monkeys, however Hans Berger, a neuropsychiatrist, is the

noted discoverer of the human EEG. Berger started studying human EEGs in 1924 using

various galvanometers and during the course of the years that followed he showed differ-

ent features within the brain signals such as sleep spindles, fluctuations of consciousness,

first evidence of the alpha rhythms, as well as evidence of a variety of disorders [9].

The EEG was developed as a method for investigating mental processes however

clinical applications quickly became evident, particularly in epilepsy. EEG became more

popular with the introduction of event-related potentials (ERPs) which are components of

the EEG resulting from specific sensory and cognitive processes (further explained in

section 1.2.4).

Many advances in EEG studies led to breakthroughs in neurophysiology and the

idea that different neurological disorders could be explored further through the use of

EEGs caused research to shift in that direction [9, 10].

1.2.1 EEG RECORDINGS

EEG recordings are acquired using electrodes placed in different locations on the scalp

with electric potentials recorded between pairs of active electrodes (bipolar recordings) or

with respect to a passive electrode or reference (monopolar recordings). These measures

are primarily performed on the surface of the scalp (scalp EEG) but special electrodes can

also be placed on the surface of the brain during a surgical operation (intracranial EEG).

Better resolution can be achieved with intracranial implanted electrodes, however a sur-
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gical procedure is required for placement of the electrodes, which makes it impractical

for most human studies [10].

For scalp recordings, the standard system in use for electrode placement is the

International 10-20 system, developed to keep a consistent placement for comparison of

studies. The system involves a number of electrodes connected to key scalp locations

generally referenced to 2 electrodes in the earlobes to obtain signals from particular re-

gions in the brain.

Figure 1. 1 shows 20 electrodes and their positions on the scalp, however many more

electrodes may be placed in between the labeled electrodes for a more thorough analysis.

The notation F for frontal, C for central (cortex), P for parietal, T for temporal, O for oc-

cipital (and A for auditory reference), indicate the regions of the brain where the elec-

trodes are placed. Convention calls for odd numbers on left and even numbers on right

[9].

Figure 1. 1: International 10-20 system for placement of electrodes on the scalp [8, 9].

7
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One problem with scalp electrodes is the artifacts that alter the EEG signal due to

head movements, eye blinking, muscle activity, etc. Since the EEG signals have low am-

plitude, artifacts contaminate the recordings, often making analysis difficult. These arti-

facts are usually removed as part of preprocessing procedure. Synchronized and repeated

signals are then averaged to make the components of interest within the signal more pro-

nounced [10].

1.2.2 SPECTRAL CONTENT OF THE EEG

Researchers have been attuned to the study of different types of brain oscillations and

their relationship with different pathologies since the beginning of electroencephalogra-

phy. It has been declared that the oscillatory activity of the brain signals is a valid meas-

ure of cognitive processing [11]. An EEG signal can be broken down into different fre-

quency bands that exist within the signal and each band has been shown to be associated

with different brain functions. The five main frequency bands are as follows:

· The delta band (0.5 - 3.5 Hz) is characteristic of deep sleep stages and has been cor-

related with different pathologies [10]. The amplitude of the delta response is also

increased during experiments using the oddball paradigm (the data collection protocol

used in this study--see Section 1.2.3) hinting that the response may be linked to signal

detection and the corresponding decision [12, 13].

* The theta band (3.5-7.5 Hz) has been correlated with higher cognitive and associative

brain processes [13, 14]. The event-related potential (ERP) components (see Section

1.2.4) in the theta band are prolonged after presentation of the target stimulus in ex-
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periments using the oddball paradigm indicating a relationship with selective atten-

tion [12, 13].

The alpha band (7.5-12.5 Hz) is sometimes divided into subsets as alphal (7.5-10 Hz)

and alpha2 (10-12.5 Hz). The oddball paradigm has been shown to influence the al-

pha responses in the P300 (Section 1.2.4) [12]. Some results indicate that the alpha

oscillations are associated with working memory [12, 15]. Schurmann and Basar,

2001, extend that the alpha response is made up of parallel processes in relation to

memory, movement and sensation [16].

* The beta band (12.5 - 30 Hz) is also divided into subsets of betal (12.5-20 Hz) and

beta2 (20-30 Hz). The beta rhythms are stronger in central and frontal electrodes and

are found to be enhanced during states of expectancy or tension [10].

* The gamma band (30 - 60 Hz) became more popular after experiments at the cellular

level showed a relationship with the linking of stimulus features into perceived in-

formation (binding theory), but have not been of much interest otherwise [10].

Basar-Eroglu et al., 1996 suggested that gamma-band activity is part of the common

language elements of the brain, which may also be associated with mutual informa-

tion transfer between subcomponents of the brain as it is with other oscillations such

as theta, alpha or beta [17]. The gamma response is, however, likely to be linked with

sensory perceptual phenomenon as indicated in a study by Karakas and Basar, 1998

[18]. Slobounov et al., 2000, performed a study akin to the visual paradigm (see Sec-

tion 1.2.3) which involved the recognition of non-stable postures of computer-

animated human body models. Results indicated that the subject's specific judgment

or awareness postural instability influenced gamma-band activity [19].

9
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1.2.3 DATA COLLECTION PROTOCOLS

In certain protocols for EEG acquisition, the patient is usually exposed to a sensory

stimulus in order to elicit a particular response, known as the event-related potential (see

Section 1.2.4). There are three modalities typically used as stimuli: auditory, visual and

somatosensory. For the auditory modality, the stimuli are single tones of a preset fre-

quency, or clicks with a broadband frequency distribution. For the visual modality, stim-

uli are produced by a single light or sometimes by the reversal of a pattern such as that of

a checkerboard. For the somatosensory, peripheral nerves are stimulated using electrical

stimuli. Bimodal stimulation, used in different experiments, is the combination of the

visual and auditory modalities [10].

Sequences of stimuli are arranged in paradigms in order to study the responses to

tasks that can test such factors as memory, reaction time, awareness, etc. The tasks in-

volved could be anything from a simple task such a pressing a button to memorization of

extensive lists. Some of the most common paradigms are explained below:

1. No-task evoked potentials paradigm involves the subject in a relaxed state, instructed

to perceive the stimuli without performing any task.

2. The oddball paradigm involves two different stimuli presented in a pseudorandom

order. The oddball tone (or target tone) is presented randomly in a series of frequently

occurring (standard) tones. The standard tone is presented in 75-80% of the trials, and

the oddball stimuli in the remaining 20-25% of the trials. The oddball stimulus is usually

a different frequency from the standard, set far enough apart to be distinguishable from

the frequent stimulus [8, 10]. For example, for the visual modality, the oddball could be

a different color flash of light. The oddball tones are generally fairly different from the
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regular tones, however for some studies, the tones maybe close in frequency making the

test 'harder' than usual [18]. The test subjects are instructed to do a simple task after

hearing each oddball tone such as pressing a button, keeping a mental count of the num-

ber of oddball tones, etc [8, 10, 20].

3. Mismatch negativity paradigm involves a regular stimulus and a deviant stimulus like

the oddball paradigm, but the subjects are asked to perform an irrelevant task not ac-

knowledging the oddball tones, with attention devoted elsewhere [18].

4. The "three-stimulus" paradigm involves a typical oddball paradigm with novel or

"distractor" stimuli randomly added. These novel tones consist of a disruptive sound

such as dog barking, color forms, etc. that disrupt the regular oddball paradigm routine

[21].

Yamaguchi et al, 2000, developed a variation of this paradigm with the use of

novel tones consisting of 60 unique environmental sounds, recorded from Disney movies

and edited to be 200ms in duration. Frequent stimuli occur 65% of the time, oddball

stimulus 20% and the novel tones 15%. Again, the subjects are asked to respond only to

the oddball stimulus by performing a simple task defined at the onset of the experiment.

This type of experiment is performed in efforts to differentiate between different types of

dementia [22, 23].

1.2.4 EVENT RELATED POTENTIALS (ERPs)

The change in the ongoing EEG due to stimulation is called an event related potential

(ERP) or sometimes an evoked potential (EP) [10]. ERPs are a series of positive and

negative peaks that occur in response to a specific event to which the subject is usually
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asked to respond (detecting the target tone). Each element of the ERP has a name that

denotes its sign and its latency after the stimulus is perceived by the subject.

P50 is a positive peak occurring around 50ms following the stimulus. N1 is a

negative peak occurring at approximately lOOms and according to a study by Golob and

Starr, 2000, the amplitude and latency changes of this peak may be observed during

memorization tasks [24]. Polich et al., 1997, speculate that differences in N1 ampli-

tude/latency between target and standard stimulus responses in an oddball paradigm may

originate from attentional processing [23].

P2 is a positive peak at approximately 200ms after the stimulus. P2 response is

stronger due to the standard stimulus in an oddball paradigm as opposed to target stimu-

lus, implying that it contains a component due to sensitivity of the sensory processes

other than cognitive processes [23].

N2 is a negative peak at approximately 200ms. This response is found to be

stronger in response to target tones in the oddball paradigm, however, given its close

proximity to the P3 component, it is hypothesized that the amplitude and latency of the

N2 may be affected by the P3 generation [23]. P3 or P300 is a positive peak occurring

around 300ms. The P300 has been shown to occur only in response to oddball tones and

has also been associated with mental activity.

The P3 is measured by quantifying its amplitude and latency, where amplitude is

defined as the voltage difference between a prestimulus baseline and the largest peak

with latency between 250-400ms. The latency is the time measured from stimulus onset

to the point of maximum positive amplitude within the particular latency window [23].

The latency and the amplitude of the P300 component have been shown to be related to
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age and the mental ability of the individual [9, 23]. Figure 1. 2 shows a typical ERP in

response to a target tone (b) and in response to a non-target tone (a). Note that the P300

appears in response to the target tone [20].

The P300 has a dominant delta response oscillation [11], which appears inde-

pendent of the modality of the stimulus [25]. The P300 can be attributed to a manifesta-

tion of central nervous system activity involved with the processing of new information

when attention is engaged in updating memory. The latency of the P300 in the discrimi-

nation task provides an indication of individual variability in mental processing capability

and speed [8].

In an experiment by Katayama and Polich in 1999, 12 cognitively normal young

adults were subject to EEG recording using a three stimulus oddball paradigm in both the

visual and auditory modalities. The P300 component was largest over the parietal and

midline electrodes and occurred in response to the target and non-target stimuli for both

modalities [26].

In a study by Polich and Herbst, 2000, the P300 was found to be comparable to

other clinical test procedures considering its underlying measurement and variability.

The only catch is that the test procedures to obtain the measurement must be standard-

ized, such that the methods and conditions under which the data are collected are identi-

cal. This is something that has yet to be achieved [27].

For experiments involving the novel tones, a second P300 is created. The target

P3 or P3b is the traditional P300 with the strongest area of detection being the parietal

electrode. The novelty P3 or P3a is in response to an alarming or novel stimulus and

originates in the frontal region. The use of the novel tones is said to increase the P3b and,
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Figure 1. 2: ERPs, (a): Nontarget (standard) Response, (b): Target response.

of course, elicit a P3a. The P3a, however, is only readily observed in about 20% of nor-

mal subjects which, although this peak may be the most sensitive to changes in cognitive

function, tends to limit its use [8, 21, 22].

Due to the low amplitude of the ERPs compared with the ongoing EEG, averag-

ing several of the responses is a common practice in effort to visualize the ERP. The

ERPs have a similar pattern of response which is more or less predictable under similar

conditions [10]. Sufficient numbers of artifact-free trials have been shown to stabilize

ERP measures (amplitude and latency) [21].
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1.3 EEG FOR THE DIAGNOSIS OF ALZHEIMER'S DISEASE

Different studies have shown abnormalities in the EEG of AD patients. Mildly affected

AD patients have increased theta activity compared to control groups and more severely

affected patients show decreased alpha activity and increased delta activity [28]. AD pa-

tients have been found to have increased delta and theta power but decreased alpha and

beta mean power. The severity of dementia has also been indicated in EEG rhythms

where the delta and/or theta rhythms can be increased even in the earlier stages of AD

and may predict the development of the disease [29, 30].

In an EEG study by Babaloni et al. a decline in the alphal activity in central, pa-

rietal, temporal and limbic region electrodes is apparent when comparing mild AD pa-

tients with vascular dementia patients and elderly control subjects. The authors conclude

that this decline may be specifically linked with mild AD. Data also suggested that in-

creased delta activity is not associated specifically with the slowing of cortical function

which may be attributed to the impairment of cortical connectivity in AD [29]. A linear

trend between theta activity and hippocampal atrophy in a study by Grunwald et al.,

2001, suggests a connection between the two [31].

Claus et al. performed a study solely on a group of AD patients with EEG and

Computed Tomography (CT) scans taken initially and at a follow-up of 4 years indicated

that decreased beta and decreased alpha activity are predictors of survival in patients with

early AD [32]. Studies by Buchwald et al., 1989 and Green et al., 1992, have shown the

P50 ERP to be diminished or nonexistent for AD patients [33, 34], however, Fien, Big-

gins and Van Dyke, 1994, contrast both previous studies by finding no changes in this

peak due to AD [35].

15



www.manaraa.com

The P300 as mentioned in the previous sections has been related to cognitive

processes that require attentional allocation and immediate memory processes. It has

been said that the P300 latency is prolonged and that the amplitude is decreased in AD

patients and sometimes this can occur so that the peak is not at all obvious as shown in

Figure 1. 3 [21, 36]. The P300 directly reflects currents triggered by cortical postsynaptic

potentials and seems to be primarily generated in the temporo-parietal cortex which

makes sense because this area shows pronounced synaptic loss in AD [37].

The P300, being derived from neural activity, is necessarily affected by the physi-

cal state of its underlying physiology. With this in mind, the P300 has been found to be

affected by dementia but there are many factors that affect this particular peak.

Figure 1. 4 shows a nearly nonexistent P300 for a normal subject and a prominent com-

ponent for an AD subject.

With most studies, the factors known to affect the P300 are kept to a minimum, as

much as can be controlled, such as no food intake prior to EEG, no medication of certain

types can be taken within 48 hours of EEG, time of day/time of year consistent through

group, etc. Some guidelines are put in place to keep variations due to factors outside the

scope of the study to a minimum [8, 38].

Criteria to control the factors known to affect the P300 response in this study were

added to limit the effects of factors other than AD on the P300. These factors are ex-

plained in Section 4.1 in Table 4.1. Even with such parameters in place, the P300, as

shown in Figure 1. 4 is most likely affected by other factors beyond those controlled in

this study. The P300 component is not analyzed specifically, however the frequency

range in which the P300 and other ERP components occur are explored.
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Figure 1. 3: (a) Normal subject EEG with obvious P3, (b) AD subject EEG with missing
P3 component.
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Figure 1. 4: (a) Normal subject EEG with P3 not obvious, (b) AD subject EEG with
prominent P3 component.
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1.3.1 SCOPE AND ORGANIZATION OF THESIS

1.3.la SPECIFIC OBJECTIVES

1. Determine if multiresolution wavelet analysis is a feasible approach for the early di-

agnosis of Alzheimer's disease through the use two different types of wavelets where

classification performance is determined with different pattern recognition techniques.

2. Compare the performance of the two different types of wavelets used in the analysis as

well as the performance of the different pattern recognition algorithms.

3. Combine the two types of wavelets using a data fusion method in effort to provide a

more informed decision for classification.

4. To create an automated algorithm for the early diagnosis of Alzheimer's disease

through the analysis of EEG signals that is comparable in accuracy to a clinical diagnosis.

Multiresolution wavelet analysis, as will be shown in Section 2.3, is a suitable

method for the analysis of nonstationary signals such as EEG signals. This indicates that

wavelets are likely a feasible approach for the early diagnosis of Alzheimer's disease.

Two different types of wavelets are used to analyze the signals due to their use in previ-

ous studies. It is initially unknown if one wavelet will perform better than the other.

The different pattern recognition techniques were also compared. The Learn++

algorithm had been shown in previous studies to perform about the same, if not better in

some cases than a single MLP neural network. The results of these methods are com-

pared and are described further in Chapter 5 and Chapter 6. The data fusion of the two

types of wavelets was performed based on results from each of the types of wavelets in-

dividually. The two types of wavelets appeared to be extracting different information

from the signal implying that the combination of the two wavelets may provide a more
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informed classification decision. It was expected that the performance of the data fusion

would be greater than the performance values from either wavelet individually.

1.3.lb ORGANIZATION

The organization of this thesis is as follows. The background detailing the reasons for

using EEG signals for the diagnosis of AD has been described in this chapter. Chapter 2

describes previous use of several different techniques for the analysis of EEG signals to

provide a background into the basis of this project. Several methods in analyzing EEG

signals described here have been further explored to advance research in this area. Meth-

ods particularly in the time-frequency domain are utilized along with different automated

classification techniques. The theory involved in these particular techniques is described

in detail in Chapter 3.

The overall expectation of this research is to explore the feasibility of using wave-

lets with several pattern recognition techniques for the early diagnosis of AD. First of all,

two methods for analyzing EEG signals are explored in detail in Chapter 3 (power spec-

tral density and wavelet analysis with focus on two types of wavelets). Results for these

methods using a single MLP neural network and using the Learn++ algorithm with an

ensemble of MLP networks are shown in Chapter 5. After results are obtained for the

different feature sets with the MLP and Learn++, the features are then combined using

data fusion in order to determine whether a better classification performance than any of

the previous methods on their own can be achieved. Figure 1. 5 shows an overview of

the analysis while the details are discussed in Chapter 4
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All simulations of the results indicate that wavelets, used with either Learn++ or a

single MLP, provide a diagnostic performance comparable to that of a clinical diagnosis.

A comparison of results for the two methods-single MLP and Learn++ is given in

Chapter 5 along with the specific results. Data fusion of several features using an ensem-

ble approach was expected to be able to give a more informed classification decision than

a single feature set with a single classifier or ensemble of classifiers. Results are shown

for the combination of the two wavelet feature sets with a data fusion method using an

ensemble of classifiers approach. Overall, the results obtained in this study indicate that

wavelet analysis is a feasible tool for the early detection of AD but also that the data fu-

sion of several features (different wavelets or other feature) could be used to allow for a

more informed decision for classification.

Figure 1. 5: Overview of project.
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CHAPTER 2

BACKGROUND

The techniques described in this chapter have all been used in the analysis EEG signals.

Some studies focus specifically on the analysis of ERPs, while others explore the fre-

quency bands without focusing on the ERPs. Some of these techniques have been found

to give promising results in EEG analysis for the detection of AD, however, many others

have not been applied specifically for the detection of AD, such as the quadratic B-Spline

wavelets. Several of these techniques were chosen for further exploration based on dif-

ferent factors, such as feasibility, dataset characteristics, etc. The power spectral density

and two wavelets- Daubechies4 and Quadratic B-spline are further described in

Chapter 3.

2.1 FREQUENCY DOMAIN TECHNIQUES

Spectral analysis based on the Fourier Transform has been the most widely used quantita-

tive method for the analysis of EEG signals. It allows the separation and study of differ-

ent EEG rhythms, which is difficult to perform visually since several rhythms occur si-

multaneously. Power spectral density and coherence are further discussed in Chapter 3,

while dipole source analysis is briefly described in Appendix D.

2.1.1 POWER SPECTRAL DENSITY

This method involves the computation of the power spectral density for the individual

frequency bands of interest in the signal. A formal definition of power spectral density
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can be found in Section 3.1.2. Several studies have been performed using this method for

detection of AD.

Pucci et al., 1998, performed a study with 25 AD patients, 25 non-AD demented

patients and 50 normal control subjects. EEG data were collected in resting eyes

closed/eyes opened conditions and the data were subject to spectral analysis where the

power was computed in five 5.5 Hz bands in the range of 1-28.5 Hz. Five unconven-

tional frequency bands were explored: 1-6.5 Hz (B1), 6.5-12 Hz (2), 12-17.5 Hz B3),

17.5-23 Hz (B4), 23-28.5 Hz (B5). The absolute and relative powers were calculated for

all frequency bands and derivations and then a logarithmic transform were applied.

Three different power spectrum profiles were observed: (i) type A spectra, characterized

by single or multiple peaks in the 6.5-12 Hz range, (ii) Type B spectra, characterized by

increased power below 6.5 Hz and no peaks in the 6.5-12 Hz range, and (iii) type C spec-

tra, having a low overall power and no dominant peaks in the 6.5-12 Hz range or else-

where. They found a lack of dominant activity in the 6.5-12 Hz band in a significant

number of the AD patients. In conclusion, the study provides further evidence that EEG

spectral analysis allows for the identification of a particular group of AD patients from

other AD patients or other types of dementia [39].

Pucci et al., 1999, evaluated the relationship between various EEG spectral pa-

rameters and the age of onset of AD. The study involved EEG recordings during wake-

fulness with eyes opened and again with eyes closed. The test involved 150 AD subjects

and 52 normal controls. The AD patient group was subdivided into three groups accord-

ing to age of onset (OA): 1) OA < 60, 2) 61 < OA < 69, 3) OA > 70. The frequencies

explored consisted of five 5.5 Hz bands in the range of 1-28.5 Hz as in the previous
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study. EEG spectral profiles were obtained from plots of the power spectral density val-

ues and were considered substitutes for the absolute powers. The three different power

spectrum profiles were observed: (i) type A spectra, (ii) Type B spectra, and (iii) type C

spectra, as described in the previous study by Pucci et al. The results confirm that this

method can discriminate between AD patients and normal controls although the intention

was to compare between AD groups for this study. In early AD, the EEG spectrum is

characterized by lack of a dominant peak in the 6.5-12 Hz frequency range. The age of

onset was found to correlate inversely with the 1-6.5 Hz relative powers and positively

with the 6.5-12 Hz relative power. Evidence was shown for EEG changes due to early

onset of AD when all three subgroups were compared [40].

Rodriguez et al., 1999, performed a study to determine whether a parameter such

as the power spectral profile may be useful in the detection of AD. Forty-eight patients

with probable AD were recruited and divided into four groups based on global deteriora-

tion scores (GDR) which is a scale for assessment of dementia. 18 healthy control sub-

jects were also recruited for the study. The EEG was recorded with eyes closed, in a rest-

ing state. The spectral profile for each patient was expressed by the relative power of

seven different frequency bands (2-3.5 Hz, 4-5.5 Hz, 6-7.5 Hz, 8-9.5 Hz, 10-11.5 Hz, 12-

13.5 Hz, and 14-22.5 Hz). Overall, the findings showed that 4-5.5 Hz and 10-11.5 Hz

band powers displayed the highest significance statistically in differentiating between the

groups. They conclude that spectral morphology significantly changes with the progres-

sion of AD and since it is widely available may be useful in a clinical setting for staging

AD [41].
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Polich, 1999, outlined several EEG/ERP studies using similar recording and

analysis methods. EEG was recorded for resting eyes open and eyes closed conditions

and spectral analysis was used to extract spectral power and mean frequency for six

bands: delta (0.25-4 Hz), theta (4-8 Hz), alpha-i (7.5-9.5 Hz), alpha-2 (9.5-12.5 Hz),

beta-i (12-20 Hz), and beta-2 (20-70 Hz). The overall or global (0.25-70 Hz) EEG

power and mean frequency were also computed. An oddball paradigm was performed in

different modalities to elicit ERPs for the different experiments. The spectral power data

were subject to logarithmic transformations and then analyzed statistically while the

mean frequency data were assessed directly. The P300 amplitude and latency were also

analyzed for some of the studies [38]. These studies, 1-4, are described below in the or-

der they were discussed in Polich, 1999.

Study 1, on EEG/ERP by Intriligator and Polich, 1995, explored individual vari-

ability in EEG and its relationship to the P300 variation in a group of normal young adult

subjects. The background EEG was quantified and correlated with the P300 ERP meas-

ures to assess the effects of alpha changes on both the background EEG and P300. This

was done primarily because a relationship between the EEG and P300 would help to ac-

count and control ERP variation between individuals and improve the utility of the P300

as a measure of cognition. The findings showed that EEG spectral power and P300 am-

plitude are positively correlated, where the strongest relationships were observed for the

delta, theta and alpha-1 bands. The frequency of the EEG is associated with P300 la-

tency in a variable manner across the different frequency bands and recording sites. Fi-

nally, the relationship between the P300 and EEG was strongest with the eyes open con-

dition [38].
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Study 2, by Spencer and Polich, 1998, performed on a group of young adults, ana-

lyzed the P300 while manipulating variables known to affect its measures. Spectral

analysis was used to examine the individual EEG trials that were later averaged to pro-

duce the ERP. The amplitude/latency as well as spectral power/mean frequency meas-

ures were obtained. In order to manipulate attention-requiring task demands, the oddball

paradigm was performed several times with varying tasks: 1) ignore the target, 2) count

the target and 3) count the target and standard tones. The alpha and delta bands demon-

strated greater spectral power for the count target and count both conditions. The find-

ings show that ERP task demands differentially affect the EEG power spectrum as a func-

tion of the attention requirements of the task. In summary of these studies, task demands

affect the alpha band activity while task-induced changes that affected the P300 also pro-

duced changes in the delta and theta bands [38].

Study 3, Polich, 1997, conducted a comprehensive study on 120 subjects ages 20-

70+ years, with 10 males/10 females per each age decade. EEG spectral and ERP P300

measures were used to assess changes between the age groups by correlating the EEG

power from each band with the P300 latency. Age produced systematic decreases in

power and some increase in frequency for the specific frequency bands. As age in-

creases, delta, theta and alpha-2 power decrease with an increase noted for the beta-2

power. The decrease in EEG power for the delta, theta and alpha bands was correlated

with the decline in P300 amplitude as age increases. These effects were strongest for the

eyes open condition with auditory stimulus. No reliable associations were found for

P300 latency and the EEG mean frequency.
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Study 4, Polich, 1996, reviewed measures between the P300 and age by compar-

ing several studies. The correlations between the P300 and age vary across the studies

because of differences in sample characteristics and task parameters. The relationship

between the P300 and EEG may be mediated by event-related desynchronization (ERD)

when the task information is processed. ERDs are believed to originate from stimulus

and task related shifts in the alpha band power and have been linked to attentional proc-

esses [38].

Hibino et al., 2001, performed analysis on EEG data collected (resting eyes

closed condition) from 26 AD patients and 17 normal control subjects but with multiple

EEG recordings for some of the AD patients, giving a total of 35 recordings for AD pa-

tients and the 17 from the control group. Power spectra was calculated using the fast

Fourier transform and separated into 9 frequency bands: delta (3-4 Hz), theta 1 (4-6 Hz),

theta 2 (6-8 Hz), alpha 1 (8-9 Hz), alpha 2 (9-11 Hz), alpha 3 (11-13 Hz), beta 1 (13-15

Hz), beta 2 (15-20 Hz), and beta 3 (20-25 Hz). The relative power of each frequency

band was calculated and the results for the alpha waves were averaged. The delta and

beta waves were not used for the analysis because influences due to eye movement in the

delta waves were not negligible and no effects on the beta waves due to cognitive deterio-

ration have been reported. The theta 1, theta 2 and averages of the alpha waves were

used as input into a fuzzy neural network (FNN), which uses fuzzy inference to make a

decision. Parameters were defined for two models, one for discrimination between AD

and control subjects and the other to estimate MMS (Mini-mental state, see Appendix C)

scores into two groups, above 24 and less than or equal to 24. Three controls were mis-

classified as having AD in the first model and for the second model, two of the patients
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MMS scores were incorrectly estimated. The authors conclude that this method provides

promising results for staging the level of AD as well as diagnosis [42].

A study by Babaloni et al., 2004 was conducted for the purpose of defining EEG

sources specific for mild AD compared to vascular dementia (VaD) and to normal elderly

subjects. The study extended previous research by providing topographical localization

of EEG sources at specific frequency bands to characterize the mild AD group. EEG

was recorded with 19 electrodes in resting eyes closed condition. FFT-based power spec-

trum analysis was performed to compute the power density of the different frequency

bands: delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz) beta 1

(13-20 Hz) and beta 2 (20-30 Hz). The low resolution brain electromagnetic tomography

(LORETA-KEY) is a functional imaging technique that gives a 3-D distribution of elec-

tric neuronal activity, modeling the cortex as a collection of volume elements called vox-

els. This study used LORETA to compute the power.spectral profiles of cortical EEG

sources. Mild AD showed occipital, temporal and limbic delta sources have a greater

magnitude then those of normal aging. However the magnitude of the delta sources in

VaD was greater than mild AD. Occipital alpha 1 sources showed a decline in mild AD

compared to VaD. They conclude that the LORETA approach is a valid potential method

for illustrating the power spectrum profiles as the level of cortical EEG sources and fur-

ther studies should be performed with neural networks or discriminant analysis [29].
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2.1 .2 OTHER METHODS

COHERENCE

Besthor et al., 1994 recorded EEG signals from 50 AD patients and 42 normal controls

with resting, eyes closed condition from 17 electrodes. Coherence is the normalized

crosspower spectrum per frequency of two signals that are recorded simultaneously from

different electrodes on the scalp. Coherence is discussed in more detail in Section 3.1.3.

Coherence was computed for 6 frequency bands: delta (1.5-3.5 Hz), theta (3.5-7.5 Hz),

alphal (7.5-9.5 Hz), alpha2 (9.5-12.5 Hz), betal (12.5-17.5 Hz), and beta2 (17.5-25.0

Hz) and the spatially averaged coherence was calculated. The results show differences

between the AD patients and controls in all frequencies except for the delta band. The

effect was most pronounced in the frontal and central derivations of the theta, alpha, and

beta frequency bands. The authors indicate that the results show the effects ofneuronal

loss and neocortical disconnection [43].

Locatelli et al., 1998 analyzed EEG signals from 10 probable AD patients and 10

normal controls. EEG was recorded in resting, eyes closed condition from 16 electrodes

with ears linked as reference. 50 epochs with a duration of 1 second were used for analy-

sis. Coherences for the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30

Hz) bands were calculated as the mean coherence values of the 50 epochs selected. Both

'local' and 'far' coherences were calculated to determine whether the changes due to AD

were associated with the impairment of the short or long axonal fibers.

Their findings are in accordance with previous results showing a decreased coher-

ence for EEG high frequencies in AD. For the regional coherence, alterations were more

pronounced over the left tempero-parietal-occipital areas. For the long distance coher-
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ence, a decrease between pairs of'far' electrodes confirms that long axons are more

compromised than short ones in AD. Results also show that for the AD group there is a

significant decrease of alpha interhemispheric coherence, with these results more pro-

nounced for patients with more severe cognitive impairment. The coherence decrease of

alpha and beta bands begins in the earliest stages of the disease, while the increase of

slow band coherence is evident in the later stages [44].

Jelic et al., 2000, examined the EEG signals from 27 subjects with mild cognitive

impairment (MCI). The purpose of this study was to evaluate the clinical course of pa-

tients with MCI and the incidence of dementia within the group as well as the EEG

changes following cognitive deterioration and the potential of neurophysiological meas-

ures for predicting dementia.

EEG was recorded in resting awake condition with eyes closed from 20 elec-

trodes. Relative power was calculated for four conventional frequency bands: delta (2-4

Hz), theta (4-8 Hz), alpha (8-13 Hz, and beta (13-20 Hz). Coherence was analyzed

through statistical analysis. 14 patients were diagnosed with AD, while the other 13 re-

mained clinically stable in the follow up analysis after an average of 21 months. The pa-

tients who progressed to AD had a significantly higher theta relative power and lower

mean frequency than the rest of the group. The temporal and temporo-occipital deriva-

tions were shown to be the most sensitive to these effects. The results support the idea

that a subgroup among MCI patients will develop AD [45].

Hogan et al., 2003, examined memory-related EEG power and coherence over

temporal and central recording sites in 10 mild AD patients and 10 normal controls. A

memory test was performed during EEG data collection with 5 electrodes (Fz, Cz, Pz, T3
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and T4, with auditory reference). The following spectrum bands were defined for further

analysis: delta (0.5-3 Hz), theta (3-5 Hz), lower alpha 1 (5-7 Hz), lower alpha 2 (7-9 Hz),

upper alpha (9-11 Hz), beta 1(15-20 Hz), and beta 2 (20-25 Hz). The frequency band 12-

14 Hz was not analyzed. Spectral power and coherence for the named frequency bands

were analyzed.

For both AD patients and controls, the power in the delta to upper alpha range

was greater over the three central sites as opposed to the two temporal sites. For the beta

frequency range, the opposite occurred, where the power was greater over the two tempo-

ral sites. This could be due to the reference electrodes detecting activity from the under-

lying source, thus inflating the coherence.

AD patients were found to have more power in lower alpha 1 than controls. This

difference occurred primarily in central as opposed to temporal sites. For coherence, the

upper alpha band produced significant group differences. The overall results are consis-

tent with previous research where it is suggested that upper alpha has a role in memory

processes and beta has a role in task demand. The authors suggest that spectral power

and coherence measures may offer insight into underlying cortical disruption [46].

Brunovsky et al., 2003, examined EEGs from 38 AD patients with varying de-

grees of dementia (mild, moderate, severe) using EEG spectra and coherences. Spectrum

analysis was performed for 6 frequency bands: delta (0.5-3.5 Hz), theta (3.5-7.5 Hz), al-

pha 1 (7.5-9.5 Hz), alpha 2 (9.5-12.5 Hz), beta 1(12.5-17.5 Hz), and beta 2 (15.5-25 Hz).

The mean amplitudes (square roots of the power values) were calculated for each band.

For each of the 6 frequency bands, intrahemispheric ('local') coherences were calculated

for the anterior and posterior brain regions and the interhemispheric ('far') coherences
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consisted of pairs of distant electrodes on either side of the head. The results of statistical

evaluation indicated decreased 'far' coherences in the alpha frequency bands were highly

correlated with the degree of dementia. This indicates that the lower the coherence in this

range, the higher the degree of dementia for the patient. The authors conclude that a

combination of EEG spectral values and coherence may be used to supplement clinical

evaluations [47].

DIPOLE SOURCE ANALYSIS

In a study by Musha et al., 2002, 25 patients with mild AD, 33 patients with moderately

severe AD and 56 control subjects underwent EEG recording in resting eyes closed con-

ditions with 21 electrodes. Uniform scalp potential distributions are approximated well

with single equivalent current dipoles within the brain. The degree of uniformity is

measured by a quantity known as dipolarity. Cortical lesions result in randomly oriented

dipoles which lower the dipolarity of the scalp potential distribution. A dipole is pair of

equal and opposite electric charges of opposite sign separated by a small distance. In this

study they examine the mean alpha dipolarity to measure the degree of uniformity of the

alpha EEG component in mild and moderately severe AD patients with a control group of

normal aging subjects. The alpha frequencies were obtained using the FFT and a 3 Hz-

wide, digital bandpass filter. The results show a progressive decline in the mean alpha

dipolarity and an increase in its variability as AD becomes more severe. The authors hy-

pothesize that the degree of non-uniformity of the electrical activity of the brain shows

the degree ofneuronal death in the brain. Attempts were made to model the neurophysi-

ological state of each individual's brain. The method used in this study was named Diag-

nosis Method of Neuronal Dysfunction or DIMENSION. The authors suggest that fur-
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ther research on this method would be necessary, also mentioning that an account of

medications taken by patients should be considered [48].

2.2 TIME DOMAIN TECHNIQUES

In some cases analysis is performed without using any transformations and calculation

are performed in the time domain. Some of the studies discussed previously in ERP sec-

tion, conducted to determine correlations between the P300 amplitude and latency across

different groups used time domain analysis. Mutual information analysis is discussed in

this section and is further described in Appendix E.

CROSS MUTUAL INFORMATION

Jeong, Gore and Peterson, 2001, performed a study using baseline EEGs for 15 AD pa-

tients and 15 healthy controls using 16 channels. The purpose of the study was to deter-

mine the information transmission between cortical areas of the brain of an AD patient by

estimating the average Cross-Mutual Information (CMI) between EEG electrodes. CMI

is used to quantify information passed from one time series to another. Auto mutual in-

formation (AMI) estimates how much on average, the value of the time series can be pre-

dicted from the values of the time series at preceding points. Mutual information gives a

measure of the linear and nonlinear dependencies between two time series. Once the

CMI was calculated and the AMI was estimated, statistical analysis was performed to

compare the two subject groups. The results showed that the CMIs as a function of dis-

tance between electrodes dropped off more rapidly for AD patients than for the controls.

This was more obvious for increased distance between electrodes. It is speculated that

reduced CMIs in AD patients could be due to dissociation between cortical and subcorti-
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cal structures in the brain or by degeneration of subcortical structures. In the AD pa-

tients, the AMIs decreased much slower with time delay than they did for the controls.

The rate of decline of the AMI is positively correlated with entropy, so the slower decline

of the AMIs of the AD patients implies that their EEG activity is less complex than the

activity of the controls. The authors suggest for further research to be geared towards

examining the associations of mutual information measures with cognitive variables and

comparing the transmission of information in AD patients with other types of dementia

possibly to develop a means for early diagnosis [49].

2.3 TIME-FREQUENCY DOMAIN TECHNIQUES

The use of wavelets in the analysis of EEG signals has become more popular over the

years. The time-frequency localization is one of its many valued properties, which are

discussed in more detail in Section 3.2. Most of the studies below use wavelets to deter-

mine if they provide adequate information about ERPs that would make them beneficial

in further research.

2.3.1 DAUBECHIES 4 WAVELET

Polikar et al., 1997 applied the Daubechies 4 wavelet to EEG data collected from 14

normal subjects and 14 subjects diagnosed with probable AD. The ERP response in the

oddball paradigm was analyzed to determine if the use of the wavelet transform was fea-

sible for the detection of AD with a multilayer perceptron (MLP) neural network. Half of

the signals, 7 AD and 7 normal, were used for training while the rest were used for test-

ing the network. The generalization performance of the network was 93%. The results

33



www.manaraa.com

confirm that the approach is feasible for classifying ERPs but a more diverse database

with a larger variety of signals would allow for statistically valid generalizations [20].

Petrosian, et al., 2001, explored wavelet transform by using specifically designed

and trained recurrent neural networks (RNNs) to discriminate between EEGs of ten mild

AD patients and ten age-matched control subjects. The EEG recordings were taken dur-

ing resting state without the use of a paradigm. The Daubechies 4 wavelet was chosen

due to its good localizing properties in the time and frequency domain. The RNNs used

in the study belong to a type of discrete-time recurrent MLPs. This type of network has

better temporal capabilities than that of a regular feedforward MLP and is capable of rep-

resenting and encoding strongly hidden states. Training on three AD subjects and three

controls and testing on the remaining controls yielded performance that was better than

chance with 80% sensitivity and 100% specificity. Five out of seven of the AD subjects

were correctly classified. The authors suggest that their approach may be extended to

include more classes such as other types of dementia [50].

2.3.2 QUADRATIC B-SPLINE WAVELET

The quadratic B-spline wavelets have been widely used in the analysis of ERPs, but have

not in previous research been applied to ERPs with the purpose of differentiating between

AD and normal cohorts. In a study by Ademoglu et al., 1997, quadratic B-spline wavelets

were used in the analysis of pattern-reversal visual evoked potentials of normal and de-

mented patients. This study was primarily performed to further explore the components

of the ERPs, not to distinguish between classes. The wavelet was shown to capture par-

ticular events occurring within the ERP and was found suitable for further applications as
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a discrimination technique for cases of clinical problems associated with peak latency

[57].

Demiralp et al., 1999a, performed analysis of EEG signals from 10 healthy volun-

teers, aged 18-25 years, obtained through the use of the oddball paradigm. The purpose

was to investigate the effectiveness of the wavelet transform in the analysis of ERPs. The

transform is applied to both averaged and single-sweep responses. The results show that

the delta, theta, and alpha processing levels all have some involvement in time during the

oddball task. Analysis involving the topography pattern of the electrodes indicates that

the wavelet coefficients reflect functional components at specific regions of the brain.

The authors conclude that the wavelet transform is a powerful method for decomposing

ERPs on the basis of frequency, temporal position and scalp topography. They suggest

that signals of the same frequency ranges but with specific temporal position and/or scalp

topography can be distinguished. It is also possible that processes overlapping in time

can be separated by frequency and/or scalp topography. The wavelet transform is useful

for its capability of separating various simultaneously occurring frequencies that could

not be detected in the time domain signals [51].

Demiralp et al., 1999b, also performed an ERP study on 10 healthy volunteers

between 18 and 55 years of age using an auditory oddball paradigm. The goal of this

study was to classify single ERPs according to their characteristic response properties.

Quadratic b-spline wavelets were used for their near optimal time-frequency localization

properties. Wavelet decomposition yields six sets of coefficients, each belonging to dif-

ferent frequency bands, 62-125 Hz (high gamma), 31-62 Hz (gamma), 16-31 Hz (beta),

8-16 Hz (alpha), 4-8 Hz (theta), and 0.5-4 Hz (delta). The grand average of the target and
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non-target response were calculated and compared. The delta response amplitude was

found to be increased for the target response. Also for the theta and alpha frequency

ranges showed increased amplitude and prolonged target responses. The P300 response

was detected in single trials using the wavelet coefficients for the delta frequency range.

Instead of just using single trials, the averaging technique is still the most reliable tech-

nique for ERP estimation although it is inefficient. Another approach would be to clas-

sify the patterns in single trials building more homogeneous subgroups of sweeps and

then average those in order to obtain ERPs with lower variability[52].

Quiroga et al. in 2001 used quadratic B-spline wavelets and Fourier transform to

analyze evoked potentials and compared results of the analysis. The evoked potentials

were elicited through the use of two techniques: pattern visual (to review alpha band)

and bimodal (to review gamma band). The results for analysis of the alpha band indicate

that they are best localized in the occipital region. The gamma amplitude was the largest

in response to bimodal stimulation as compared to auditory or visual stimulation alone.

The responses to bimodal stimulation indicate that the response may be something other

than the response to the two forms of stimulation combined but a new response. For the

comparison of the wavelet transform to the Fourier transform, the researchers found the

wavelets to have two advantages. The first is that the wavelet transform is capable of

analyzing non-stationary signals which is critical for avoiding spurious results of the Fou-

rier transform considering that brain signals are highly non-stationary. The second is that

better time-frequency resolution can be achieved so the ERP responses can be analyzed

closely [53].
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CHAPTER 3

APPROACH

The theory involved in this study is discussed in this section. The Fourier transform and

coherence analysis were not explicitly used in this study but are included here for com-

pleteness. Power spectral density and wavelet analysis are discussed in detail in this

chapter to provide a thorough background into this study.

3.1 FREQUENCY DOMAIN TECHNIQUES

Frequency analysis is an alternate and informative technique for describing time domain

signals. An advantage of the frequency domain representation over the time representa-

tion is its ability to give a clear visualization of the specific frequencies and their contri-

butions within the signal. The Fourier Transform (FT) is computationally attractive

since it can be calculated using the Fast Fourier Transform, an extremely efficient algo-

rithm. The FT is often used for the analysis of frequency bands and the analysis of

evoked responses in EEG signals [10, 54].

3.1.1 THE FOURIER TRANSFORM

The Fourier Transform describes a signal x(t) as a linear superposition of complex expo-

nentials characterized by their frequencyf

+X

x(f) = x(t)e-'2dt (3. 1)
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+M

(t) = JX(f)eV2%df (3.2)
-oo

Equation (3.1) is the continuous Fourier Transform of the signal x(t) and Equation (3.2) is

the inverse Fourier transform of X(). X9) can be seen as an inner product of the signal

x(t) with complex exponential e-2 t, also known as the kernel function.

X(f) =< x(t),e-"'M > (3. 3)

Since the kernel functions, e -'2'I are orthogonal, the FT is not redundant. Consider the

following signal, x[n] consists of N discrete values, sampled at A seconds apart

x[n] = {x, x,,..., xNI_} = {x } (3. 4)

where x, is the measurement taken at a time t = t o + jA. The discrete Fourier Transform

(DFT) of this signal is defined as:

X (k)= x[n]e-i2Mn/N k = 0,.., N -1 (3. 5)
n=O

The signal can be reconstructed from its DFT coefficients:

1 N-1
x[n] = - X(k)e' " ' (3.6)

N k=0

where X(k) = X*(N-k) holds for real signals and the discrete frequencies defined as:

k
Afk = k (3.7)

NA

Note that the discrete Fourier Transform gives N/2 independent complex coefficients,

thus giving a total of N values as in the original signal and therefore is not redundant.

The frequency resolution is then:

Af - (3.8)
NA
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1 N
The frequency fN = -, corresponding to k = - in Equation (3.7) is called the

2Ai\ 2

Nyquist frequency and it is the highest frequency that can be detected with a sampling

period A. If the signal x(n) has frequencies above the Nyquist frequency, the frequencies

are processed as though they are in the rangefk <fN, thereby producing aliasing effects in

the signal. The greater the spurious effect, the greater the errors and the less adequate the

sampling rate A for representing the signal [10, 54].

3.1.2 POWER SPECTRAL DENSITY

The successive discrete values in a signal such as the EEG have a certain degree of inter-

dependence. The joint probability distribution of the signal can be calculated to describe

this interdependence. When applied to a pair of values at two discrete moments, x(t) and

x(t2), the definition of the joint probability can be considered for N realizations of the sig-

nal and the number of times that at ti a value v and at t2 a value u are encountered is con-

sidered equal to nh2. So the joint probability may be defined as:

p(x( 1)= , x(t 2) = U) = im (3.9)
N--oo N

The properties of a signal generated by a random process can be described by specifying

the joint probability density function

p((x(t,),x(t2 ).. x(t )) (3. 10)

for all discrete time samples t, t2, ...,tn and for all finite values ofn. This computation can

be rather complex so an alternative approach is to compute a number of averages charac-

teristic of the signal such as the covariance, correlations and spectra which are useful for

general description of the signal.
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The covariance at two time samples x(tj) and x(t) between two random variables

is given by

E[(x(t, )- E(x(,))Xx(t 2)- E((t)))] (3. 11)

where E represents the expected value of the variable. To estimate the covariance be-

tween any two variables x(t, ) and x( 2 ), it is necessary to take averages over a number

of realizations of an ensemble. The covariance for a stationary ergodic signal (see Ap-

pendix C) can also be estimated using the time average as shown:

i N
,(rk) = (x(t)x(t + rk)) = - ,x(t,)x(t, + k) (3. 12)

( 1i=

where T is the time for one realization of the signal and r k = k At. If every sample func-

tion is representative of the whole, the time average x(T,) for one realization x(t) is an

estimate of the ensemble average RxX(r):

R = (r) = E[x(t)x(t + r)] (3. 13)

which is also known as the autocorrelation function. With this equation, assuming that

the signal x(t) has zero mean, then for the value r=O,

R(O) =E[x2(t)]lim- j x2(t)dt (3. 14)
->ao 2T _

gives the average power or variance, a, of the signal. The Fourier transform of the auto-

correlation function is the power density spectrum or power spectrum, Sx,, a commonly

used parameter for EEG quantification.

S(f) = JR(,,r)e-j2 rdr = FT[R (r)] (3. 15)
-00
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The power spectrum gives the distribution of the squared amplitude of different fre-

quency components within the signal.

For calculation of the power spectrum of a discrete EEG signal, the epoch [x(t)]

is considered as a signal sampled at the intervals At, x(nAt) with a total of N samples

(n=I...N). By using the discrete Fourier transform, the periodogram, Fxx(f) can be calcu-

lated as:

F,(f) = I x(t,)e- 2 iAs (3. 16)

wheref=ifwith i=0,1,2...,N.
wheref =i -Af with i=OJ,2...,N.
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Figure 3. 1: Power spectral density of an EEG signal (a) original signal, (b) PSD of sig-
nal.
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With the use of a window, W(fk), the periodogram may be smoothed in order to obtain

Pxx,() which is a better estimate of the real power spectrum SfW:

Px (fI)= W(fk)F, (+k) (3. 17)

where W(fk) is the smoothing window with a duration of(2p+1) samples [9]. The perio-

dogram is actually the discrete-time Fourier transform (DTFT) of the estimate of the cor-

relation function [55]. Figure 3. 1 shows the power spectral density of an EEG signal us-

ing the periodogram method.

3.1.3 COHERENCE ANALYSIS

Coherence is a quantitative measure of the consistency of phase between two signals.

Coherencies measured between different distinct scalp locations provide measures of mu-

tual influences, however the magnitudes of these influences in complex, non-linear dy-

namic systems can be significantly different at different frequencies or scales. Data sug-

gests that in the neocortex, global dynamics are displayed at certain frequencies (usually

near 10 Hz) while local behavior is evident at other frequency ranges (often near 40 Hz).

Amplitude and coherency are generally independent measures of waveforms. Increased

EEG scalp amplitude is normally associated with increased local 'synchrony' (increased

coherence of local current sources, typically within a few centimeters), however this can

occur independently of longer range coherence changes which may have a small effect on

amplitude.

Each epoch, n, of channel x yields the complex Fourier transform Xx9). The single ep-

och power spectrum or auto spectral density function is:

Sx, (f) = X. (f)x ( ) (3. 18)
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Where * indicates the complex conjugate. It follows that the cross spectral density func-

tion for channels x andy is:

S,(f) = X (f)X (f (3. 19)

Accurate estimates are provided by these equations if many epochs (N) are averaged

where the cross spectral density function estimate is:

1 N

n=l (f) (3. 20)
N n=1

with a similar expression for the power spectrum Sx69 for each channel x. The coherency

estimate based on N epochs is given as:

)=S,- Y ( (3.21)
S(f)S(Cf)

[46, 56]. For a 95% confidence interval, the power or coherence estimates can be ex-

pressed as:

) < (f) < S(f (3.22)
1 + 2e 1- 2e

(this applies to auto or cross spectral density and coherency). The confidence interval

depends on the normalized root mean square error, e. For spectral density estimates

based on statistically independent epochs, the error is estimated by:

es -= (3.23)

if the epoch is greater than 25. The error term for the coherence estimates is given as:

e 2 - I 2/ 1- (3.24)
2
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This depends on the coherence itself and may be estimated using the estimated coherence

given that the error is small (less than 0.2) [56].

3.2 TIME-FREQUENCY DOMAIN TECHNIQUES

Fourier Transform involves a correlation between the signal to be analyzed and complex

exponentials of different frequencies. The appropriate interpretation of the FT requires

the signal to be stationary as it results in a loss of time information. 'Windowing' the

complex exponential kernel functions of the FT gives a time evolution of the frequencies

by sliding the windows throughout the signal.

STFTrr) (t,f)= [x(r) o(r-t)le-'i2dr (3. 25)

This procedure, the Short-time Fourier Transform (STFT) or Gabor Transform, consists

of correlating the original signal with modulated complex exponentials. x(t) represents

the original signal while o(t) is the windowing function and Equation (3.25) shows that

the STFT is simply the multiplication of the FT of the signal by a windowing function.

This procedure gives an optimal time-frequency representation, but is limited by the

Heisenberg Uncertainty Principle (see Appendix B) which gives a lower bound of

1
AtAf > - where At is the time resolution and Af is the frequency resolution. At

4nz

indicates how well two spikes in time can be separated from one another in the transform

domain and Af indicates how well two spectral components can be separated from each

other in the transform domain [57, 60]. If the window is too narrow, there will be poor

frequency resolution; and if the window is too wide, there will be poor time localization.

For the best resolution, low frequencies require a'wide window and high frequencies re-
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quire a narrow window. The STFT is not suitable for analyzing signals involving differ-

ent range of frequencies because of its fixed window properties. For example a wide

window would provide good localization for the low frequencies within the signal but

poor localization of any high frequency components [59].

3.2.1 THE WAVELET TRANSFORM

The Wavelet Transform was developed to overcome the fixed resolution problems of the

STFT. The main advantage of wavelets is their varying window size, wide for low fre-

quencies and narrow for the high frequencies, leading to an optimal time-frequency reso-

lution in all frequency ranges [10, 59]. The continuous wavelet transform is discussed

first leading into the discrete wavelet series and transform. Multiresolution analysis and

the subband coding algorithm are then explained before the types of wavelets chosen for

this analysis are presented.

3.2.2 CONTINUOUS WAVELET TRANSFORM

A wavelet family 1 ,b;a is a set of functions created by dilations and translations of a

unique mother wavelet y(t):

(,) , = jal 2w(t-bI (3.26)

where b, a E 91, a • 0 are the translation and scale parameters, respectively. Translation

is a time shift and scale is essentially the inverse of the frequency where large scale gives

global behavior and small scale gives local behavior (similar to a map scale). As a in-

creases the wavelet becomes narrower and by varying b, the mother wavelet is displaced

in time. The wavelet functions must satisfy two conditions:
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cO

lV(t)dt = 0 (3.27)

and

jlw(t)l2dt < (3. 28)
-co

The continuous wavelet transform of a signal x(t) e L2(91) is defined as the correlation

between the signal and the wavelet functions b, a :

CWT (b,a) = f (b, a) 2 fx()v' -bdt =< x(t), ba > (3. 29)

where * denotes complex conjugation. Then, different correlations of < x(t), I/b;a > indi-

cate how closely the wavelet function correlates with the signal at each scale a. If the sig-

nal contains a component of the frequency at the particular scale, then the wavelet basis

function at that scale will be similar to the signal at the location where that frequency oc-

curs. Since the correlation is made with different scales of a single function, the wavelet

transform is said to give a time-scale representation [10, 58, 59].

3.2.3 DISCRETE WAVELET SERIES

It is more practical to define the Wavelet Transform at discrete scales, a, and discrete

times, b since the CWT can not be electronically computed. The conventional scheme for

discretizing the time-scale parameters is called dyadic grid sampling. For this process,

time remains continuous but the time scale parameters are sampled by choosing a, =2',

6 .A = k', with j,k E Z [10, 57].
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ti,.k () = 2-i/ 2/ (2-'t -k) j,k E Z (3. 30)

For wavelet series, V' ,k (t) are required to be orthonormal, biorthogonal or frame (see

Appendix C), however, for the orthonormal case, shown below, the analysis and synthe-

sis wavelets are the same.

x' =X J()l;k(t )dt (3. 31)

or

x() = CW , ~ 'X oJ.k (t) (3.32)
j k

where c is a constant that depends on the wavelet used [57, 59].

3.2.4 DISCRETE WAVELET TRANSFORM

The discrete wavelet series is in essence just a sampled version of the CWT which pro-

vides redundant information during reconstruction of the signal. The Discrete Wavelet

Transform (DWT) is similar to the series but applies to discrete-time signals, x[n]. The

DWT is typically implemented using a method called Multiresolution Analysis.

3.2.5 MULTIRESOLUTION ANALYSIS

Contracted versions of the wavelet function match high frequency components of the

original signal and dilated versions match low frequency components. Correlating the

wavelet functions of different scales with the original signal gives the "detail compo-

nents" of the signal at different scale levels. Multiresolution analysis is a hierarchical

scheme that uses the DWT to analyze the signal at different frequency bands with differ-

ent resolutions through the decomposition of the signal.
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If the subspaces of L2 generated by the wavelets Vj,k are denoted as Wy for each

levelj, the space L2 can be decomposed as a direct sum of the subspaces Wt,

;2 = JWj (3.33)
jEZ

where Z = [..,-1,0,1,...}. The closed subspaces are defined as:

Vj = W+1 e WJ+2 ... j z (3.34)

The subspaces Vj are a multiresolution approximation of 2 and are generated by

scales and translations of the scaling (basis) function j k. For the subspaces Vj, the or-

thogonal complementary subspaces W. are given as:

V, = Vj W, jeZ (3.35)

A discrete signal x[n], denoted as xo, given a sampling rate of At = 1, can be suc-

cessively decomposed with the following recursive scheme

xj, (n) = x, (n) r (n) (3. 36)

where the terms x, (n) E V, give a coarse representation of the signal and r, (n) E W. give

the details for each scalej = O, , ... ,N. For any resolution level N > 0, the decomposition

of the signal, X(n) can be written as:

N

X(n) = ZxN(k)(2-Nn-k)+ Z C,(k) j.k(n) (3. 37)
k j=l k

where (-.) is the scaling function, Cj(k) are the wavelet coefficients, and the sequence

{xN(k)} represents the approximation of the signal at resolution level N. The second term

is the wavelet expansion. The wavelet coefficients Cj(k) can be interpreted as the residual

errors between successive approximations of the signal at scalesj-1 andj, where
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r, (n)= CCj(k)V,k (n) (3. 38)
k

is the detail signal at scalej.

Multiresolution decomposition starts by correlating the signal with shifted ver-

sions of a contracted wavelet function where the coefficients obtained give the detail of

the high frequency components. The remaining part will be an approximation of the

original signal that can be obtained by correlating the signal with the scaling function,

which is orthogonal to the wavelet function. The wavelet function is then dilated and

from the coarser signal the procedure is repeated, thus giving a decomposition of the sig-

nal in different scale levels. This method gives a decomposition of the signal that can be

implemented with very efficient algorithms since it can easily be computed through a se-

ries of simple filters, as shown in the following section for the subband coding algorithm

[10, 59].

3.2.6 SUBBAND CODING ALGORITHM

The subband coding algorithm is a filter bank implementation of the discrete wavelet

transform (DWT). The DWT analyzes the signal at different frequency bands with dif-

ferent resolutions through the decomposition of the signal (multiresolution analysis).

The DWT utilizes two sets of functions: scaling functions and wavelet functions, each

associated with lowpass and highpass filters, respectively. Decomposition is performed

by passing the original signal, x[n] through a half band high-pass filter, g[n], and a half

band low-pass filter, h[n], then sub sampling each half by two by discarding every other

sample. Half of the samples can then be eliminated according to the Nyquist's rule, since

the highest frequency in the signal is now decreased by half.
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Yhig [k] = s x[n] g[-n + 2k] Ey,^,kg[-n + 2k]
n k ..r-l1jXL

yl [k] = E x[n] h[-n + 2k] *
n

Decomposition -c Reconstruction

G Half band high pass filter ( Down-sampling

W H Half band low pass filter © Up-sampling

Figure 3. 2: 2-level DWT decomposition [52].

One level of decomposition is given as:

Yhgh [k] = x[n]. g[2k- n]
7?~~~~~~n ~(3.39)

and

yo][k] = x[n] h[2k - n]
7?~~~~~~n ~(3.40)

where yhgh[k] and ylow[k] are the outputs of the filters after sub sampling by two [20,

60]. The outputs of the high-pass filters are referred to as detail coefficients and are de-

noted as d,, where i =1, 2,..., log2N, where N is the total number of samples in the signal.

The outputs of low-pass filters are referred to as approximation coefficients, a,, and they

represent the approximation of the original signal at the current resolution level. The

original signal can be reconstructed through the summation of the coefficients at all lev-

els. At each level, the filtering procedure results in half the time resolution and double

the frequency resolution. The block diagram in Figure 3. 2 illustrates the algorithm [20].
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3.2.7 WAVELET CHOICES

The particular type of wavelet used for any application is normally chosen according to

the similarity of the wavelet to the signal to be analyzed. This is done to minimize noise

in the reconstruction of the signal as well as to better localize the structures of interest

within the signal. The two types of wavelets chosen for this study have been used in dif-

ferent studies for analyzing ERPs-the Daubechies 4 wavelet and the Quadratic B-Spline

wavelet.

3.2.7a DAUBECHIES 4 WAVELETS

Ingrid Daubechies invented the so-called compactly supported orthonormal wavelets,

which made discrete wavelet analysis practical. Compact support is given by the size of

the window varying throughout the signal so that for high frequency the window is

smaller and for low frequency the window is larger. This gives good time resolution at

high frequencies and good frequency resolution at lower frequencies [59, 61].

The Daubechies family wavelets are denoted as dbN, where N is the order, and db the

"surname" of the wavelet. The first wavelet, dbl, is the Haar wavelet. Figure 3. 3 shows

the wavelet functions y of the next nine members of the family.

The Daubechies 4 wavelet has been used in several studies for analyzing ERPs in

general, as well as for the detection of AD [20, 50]. The Daubechies mother wavelet
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db2 db3 db4 , db5 db6

db7 db8 db9 db10

Figure 3. 3: Daubechies family functions [60].

has a 'fractal structure' and has good localizing properties in both time and frequency

domains [50]. The scaling function for the db4 wavelet is given by

(3.41)

0.48296

and the scaling function coefficients are- 0 83 [62].
0.22414

- 0.12941J

The highpass and lowpass filter coefficients for the Daubechies 4 wavelet are given in

Table 3. 1.

Table 3. 1: Daubechies 4 filter coefficients.

h g

0.2304 -0.0106

0.7148 -0.0329

0.6309 0.0308

-0.0280 0.1870

-0.1870 -0.0280

0.0308 -0.6309

0.0329 0.7148

-0.0106 -0.2304
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x 10

Figure 3. 4: Daubechies 4 wavelet function [61].

x 10

Figure 3. 5: Daubechies 4 scaling function [61].

Plots of the scaling function and wavelet function for the Daubechies 4 wavelet are

shown in Figure 3. 4 and Figure 3. 5, respectively.
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3.2 .7b QUADRATIC B-SPLINES WAVELETS

Quadratic B-spline wavelets have been used for analyzing ERPs in general but have not

been used in particular for the detection of AD. Spline wavelets have been used for their

near optimal time-frequency localization properties [51, 52, 63]. These wavelets are

semi-orthogonal (See Appendix C) and have compact support in time [57]. The scaling

function and wavelet for the quadratic B-splines are shown in Figure 3. 6 and Figure 3. 7.

The filter coefficients for the quadratic B-spline wavelets are given in Table 3. 2.

Table 3. 2: Filter coefficients from [47, 49] for quadratic B-spline.

54

Coefficients of the Truncated Decomposition Filters h, g (IIR) and Recon-
struction Filters

p2, q2 (FIR) for Quadratic Spline Filters

k h(k) g(k) p2(k) q4 (k)

-10 +0.00157 -0.00388
-9 +0.01909 -0.03416
-8 -0.00503 +0.00901
-7 -0.04440 +0.07933
-6 +0.01165 -0.02096
-5 +0.10328 -0.18408
-4 -0.02593 +0.04977 +1/480
-3 -0.24373 +0.42390 -29/480
-2 +0.03398 -0.14034 +1/4 +147/380
-1 +0.65523 -0.90044 +3/4 -303/480
0 +0.65523 +0.90044 +3/4 +303/480
1 +0.03398 +0.14034 +1/4 -147/380
2 -0.24373 -0.42390 +29/480
3 -0.02593 -0.04977 -1/480
4 +0.10328 +0.18408
5 +0.01165 +0.02096
6 -0.04440 -0.07933
7 -0.00503 -0.00901
8 +0.01909 +0.03416
9 +0.00157 +0.00388
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Figure 3. 6: Quadratic B-spline scaling function [61].

Figure 3. 7: Quadratic B-spline wavelet.

Quadratic B-spline wavelets are discussed in more detail in Appendix G.

3.3 PATTERN RECOGNITION TECHNIQUES

Many studies use statistical methods in the analysis of EEG signals for classification pur-

poses, however, automated classification algorithms have become more widely used.

Some of these automated methods are discussed in this section. In automated classifica-
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tion applications, it is common to obtain the distinctive features (e.g. wavelet coeffi-

cients) of the signals to be identified then present the classification algorithm with train-

ing data consisting of those features. The trained system is then evaluated on data not

seen during the training [64].

3.3.1 MLP NEURAL NETWORK

The Multilayer Perceptron (MLP) neural network is a popular and powerful classifier

used in classification of signals whose classes are separated by a complex decision

boundary. Neural networks are typically trained with a subset of the data with the class

information available and then tested with another subset of data where the classes are

then determined by the network. The training allows for the network to identify key fea-

tures in the signals that are characteristic of the particular classes. Since it is possible that

some unknown information or characteristics may exist within the signal, a neural net-

work may be able to detect these characteristics. An MLP is a feed-forward network that

has one or more hidden layers between the input and output layers. The MLP is trained

using the supervised backpropagation learning rule (see section 3.4. la) to distinguish be-

tween the different classes (two in this study, AD and normal).

The dimensionality of the signals to be classified determines the number of input

nodes (wavelet coefficients in this study). The number of output nodes is equal to the

number of classes. The input, I, i = 1, 2,...,(62 or 121for this study) depends on the

wavelet type or other feature. The number of hidden layers and the number of nodes, Hj,

j = 1, 2, ... J, at each layer depend on the application. Ok, k = 1, 2 are the values of the

output nodes.
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AD

Normal

Figure 3. 8: MLP Neural Network architecture.

The nodes are all fully interconnected to the nodes of the adjacent layers by a set of

weights. The weights connecting the input nodes to the hidden layer nodes are denoted by

U,j, and the weights connecting the hidden layer to output nodes are denoted by Vjk. The

weights are determined through the backpropagation training algorithm described in the

next section [20, 65, 66].

3.3. la BACKPROPAGATION LEARNING RULE

Backpropagation is one of the most general and simple methods for supervised training

of multilayer networks. During training, the desired outputs for the given input patterns

are known and therefore the input to hidden weights can be adjusted to approximate the

outputs. The credit assignment problem exists since there is no set weight for the hidden

unit. Backpropagation allows for the calculation of an effective error for each hidden

unit enabling the derivation of a learning rule for the weights between the input and hid-

den layers.
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During the learning phase, the untrained network is presented with patterns and

the outputs of the network are compared with the known class information for those pat-

terns. The difference between the outputs and the target values is the error or criterion

function which is a scalar function of the weights. This function is minimized when the

output of the network equals the desired output and thus the weights are adjusted to re-

duce the error. The training error is the sum over the output units of the squared differ-

ence between the desired output, tk and the actual output, zk and is given as:

J(W)- (tk - ) =-t-z12 (3. 42)J(W)-- ~=l~tk--Zk )2= t -- Z2 k=l 2

where c is the length of the output vectors and W is the weight matrix. The backpropaga-

tion learning rule is based on the gradient decent algorithm where the weights are initial-

ized randomly and then changed in the negative direction of the gradient in order to re-

duce the error:

AW =-r/L (3. 43)

where ? is the learning rate, indicating the relative step size of the change in weights.

The algorithm demands taking a step in weight space that lowers the corresponding value

of the criterion function. The algorithm takes a weight vector at iteration m and updates

it according to W(m + 1) = W(m) + AW(m) where m is an index of the pattern presenta-

tion.

For a three layer network, considering the hidden to output weights, Wjk,

4!J _ rnet ka-= _- (3. 44)
awe aAw.
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where 5k is defined as 5k = -/J I cnetk. Assuming that the activation function (a nonlin-

ear function emitted by the hidden unit), f(-) is differentiable, Equation (3.42) can be

differentiated so that 6k becomes 6k = (tk - Z )f' netk. Together these results give the

weight update rule for the hidden to output weights:

Aw. = r6,kY = ri(t k - z k )f'(netk )yj (3. 45)

The sensitivity for a hidden unit is defined as

6 -=f'(neti ) wSk (3.46)
k=1

and the learning rule for the input to hidden layer is given as

AwP, = rp,xj = r wk6 k, f(netj)x, (3. 47)

Equations (3.45) and (3.47) along with the training protocols give the backpropagation

algorithm which may also be referred to as the "backpropagation of errors" algorithm be-

cause the error propagates back from the output layer to the hidden layer in order to up-

date the input to hidden weights [65].

3.3.2 LEARN++

Learn++ is an incremental learning algorithm, inspired in part by AdaBoost, which can

learn additional information from new data such even when such data introduce new

classes. For this particular study, there are only two classes, AD and Normal control sub-

jects, however, new classes representing the stages of AD could be introduced for further

analysis making this algorithm suitable for more advanced study of this particular
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classi{er 1

sifier 2

C

class:

r
Ad ,-w--- _S-,---- ~ classifier 4

boundary to be learned

Figure 3. 9: Weak Classifiers.

problem. For each database that becomes available, Learn++ generates a number of rela-

tively weak classifiers, whose outputs are combined through a weighted majority voting

scheme to obtain the final classification. The weak classifiers (or weak hypotheses) are

created using strategically chosen subsets of the available database and are shown in

Figure 3. 9 to learn only the region of the subset for which they are trained. A dynami-

cally updated distribution over the training data instances is calculated in such a way that

the distribution is biased towards instances that have not been adequately learned by the

previous hypotheses.

The Learn++ algorithm is outlined in Figure 3. 10. For each database Dk,

k=l, ... ,K made available to Learn++, the inputs to the algorithm are:

(i) a sequence of m training data instances x, with their correct labels yi,
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(ii) a weak classification algorithm WeakLearn, for use as a base classifier, and

(iii) an integer Tk that specifies the number of classifiers (hypotheses) to be generated.

The WeakLearn can be any supervised classifier that can achieve at least 50% classifica-

tion performance on the instances of its own training dataset. A neural network with ap-

propriate parameters can serve as a weak classifier (weak Multilayer Perceptron, MLP,

used in this case).

Learn++ starts by initializing a weight distribution, according to which a training

subset TRt and test subset TEtare drawn at the Ith iteration of the algorithm. This distribu-

tion is initially uniform, giving equal probability to each instance to be selected into the

first training subset. If an additional database is introduced, the weights are then adjusted

by the Init_dist subroutine (described later). At each iteration t, the weights w, from pre-

vious iteration are normalized to give a legitimate distribution Dt (step 1). Training and

test subsets are then selected according to Dt (step 2), and the weak classifier is then

trained with the training subset (step 3). A hypothesis ht is obtained as the tth classifier,

whose error is then computed on TRt + TEt (entire database Dk) by adding the distribution

weights of the misclassified instances,

, = ED,(i)
:h(x)y, (3. 48)

The WeakLearn requirement for classifying at least half of the training data correctly is

enforced by requiring that the error be less than 1/. If this is the case, the error is normal-

ized to obtain the normalized error

t = , /(1 - ,), 0 < , <1 (3.49)
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Figure 3. 10: Algorithm Learn++.

If the error is more than ,1 the current hypothesis is discarded, and a new training subset

is selected (step 4). All hypotheses generated thus far are then combined using the

weighted majority voting to obtain the composite hypothesis Ht (step 5).

H t = arg max E log(1/ /,)
YEY (x ()=y (3. 50)
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Algorithm Learn++

Input: For each dataset drawn from (4 k=1,2, ...,K

* Sequence of m examples S-[(x,,y),(x2, y2),...,(xym)].
* Weak learning algorithm WeakLearn.
* Integer Tk, specifying the number of iterations.
Do for each k=,2, ...,K:
Initialize w (i) = D (i) = /m, Vi, i = 1,2,...,m
Call Initdist if k>l for distribution initialization when a new database becomes available

Do for t = 1,2,...,Tk:

1. Set D, = w./ (i) so that D, is a distribution.

2. Draw training TRt and testing TEt subsets from Dr

3. Call WeakLearn to be trained with TR.

4. Obtain a hypothesis h,: X -> Y, and calculate the error of ht: 8 t = D, (i) on TRt+ TE
i(x',)y,

If t > V2, discard htand go to step 2. Otherwise, compute normalized error as P = gt /(1 -st)

5. Call weighted majority voting and obtain the composite hypothesis, Ht = argmax Elog(1/ )
6. Compute the error of the composite hypothesis yeY th,)=

E,= E D, (i)= Dt(i)H(x,) y,]
i:H, (x, )y, i=l

7. Set Bt = Et / (1- E,) and update the weights:

Wt+, (i)= W, (i) x{Bt,, if H, (x, ) = y,
) 1, otherwise

= wt(i ) X B?-[H' ( x,).y l]

Call Weighted majority voting and Output the final hypothesis:
K

Hfna,(x)=argmaxE X log1
yet k=l t.(x)=y Pt
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The weighted majority voting chooses the class receiving the highest vote from all

hypotheses. The hypotheses with good performance records are awarded higher voting

weights. The error of the composite hypothesis is then computed as the sum of distribu-

tion weights of the instances misclassified by Ht(step 6)

E,= E D,(i) = D, (i)lH(x,) y,]
'H,( )Y' '=l (3. 51)

where .j|] evaluates to 1, if the predicate holds true. The normalized composite error BA is

then computed as

B, =E,/(1-E,), O < B, <1 (3. 52)

which is then used in updating instance weights (step 7):

w,+( iw(i) x {Bl, if Ht,(x,)= y,
w1, otherwise (3. 5

= t (i) x B- H 't(',(x )Y

The weight update rule in Equation (3.53) reduces the weights of the instances

that are correctly classified, making them less likely to be selected into the next training

subset. The probability of misclassified instances being selected into the next training

subset is then increased. The algorithm is essentially forced to focus on instances that are

difficult to classify. In an incremental learning setting the newly introduced instances

quickly gain the focus of the algorithm. When a new database is introduced, the Initdist

routine initializes the weight distribution and the routine jumps to step 5 and calls the

weighted majority with the new database, determines which instances are misclassified

by the current composite hypothesis, and initializes the weight distribution accordingly.

This works effectively, particularly when instances from a previously unknown class are
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introduced. At any point, a final hypothesis Hfi,,n can be obtained by combining all hy-

potheses generated thus far using the weighted majority voting

K 1

Hnal(x) =argmax" Y log-
yeY k=l t:k(x)=y (3 54)

The weight update rule allows effective acquisition of new information when new data-

bases are introduced [64, 67].

3.3.3 BACKGROUND FOR DATA FUSION

The results from the different feature sets with the MLP and also with the ensemble of

MLP networks have repeatedly been similar to those of a clinical evaluation.

The results for each feature with an MLP neural network and the Learn++ algorithm are

shown in Chapter 5. However, since Learn++ is an incremental learning algorithm, it

also has the capability of learning additional information provided by additional features,

hence data fusion.

Data fusion performed using the Learn++ algorithm on other datasets has been

shown to improve the performance compared to that of a single feature set. The use of

this method for combining the features yields results based on more information than

those achieved with a single set of features, therefore providing a more informed classifi-

cation decision [68]. Intuitively, we expect the performance of the data fusion algorithm

to be at least as accurate as the best feature set performance.
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Figure 3. 11: Data fusion using an ensemble of classifiers.
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CHAPTER 4

IMPLEMENTATION

4.1 EEGDATA

The data set used for this project consisted of EEG acquired at Drexel University from

the patients recruited by the University of Pennsylvania for the development of an algo-

rithm for the early detection of Alzheimer's disease. Table 4.1 and Table 4.2 show the

inclusion and exclusion criteria, respectively, for the study.

Thirty-two elderly test subjects, 14 diagnosed with probable AD and 18 cogni-

tively normal controls, have so far been recruited for the study. ERP recordings were ob-

tained from each subject using the oddball paradigm while they were comfortably seated

facing a computer screen in a specially designated room. The novel paradigm was used to

take advantage of the paradigm's ability to elicit responses in the time-domain signal that

have been indicative of mental status and the differentiation between forms of dementia.

Table 4. 1: Inclusion Criteria for the study (for information on any test criteria Appendix
F includes a list of resources for further information.

Inclusion Criteria for Research Subjects
Normal subjects AD subjects

Age 60 years or older 60 years or older
Clinical Dementia Rating

(Clinical Dementia Ratig 0 Greater than or equal to 0.5
(CDR) score

Mini-mental Status Greater than or equal to Less than 24
(MMS) exam 24

Clinical assessment Neg e
results for AD Negative Positiveresults for AD

NINCDS-ADRDA
NINCDS-AD A does not satisfy satisfiescriteria
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Table 4. 2: Exclusion Criteria for study.

Exclusion Criteria for both groups
(i) evidence of any central nervous system neurological disease
(ii) use of sedatives or antidepressant medications within 48 hours of ERP acquisition

The protocol originally described by [22], with slight modifications was used.

Binaural audiometric thresholds were determined for each subject using a 1000 Hz tone.

The evoked response stimulus was presented to both ears using stereo speakers at an am-

plitude determined to be comfortable for their particular hearing level. The stimulus con-

sisted of tone bursts 100 ms in duration, including 5 ms inset and offset envelopes. Tones

of 1000 and 2000 Hz were presented in a random sequence with the tones occurring in

65% and 20% of the trials respectively. The remaining 15% of the trials consisted of

novel sounds presented randomly. These included 60 unique environmental sounds that

were recorded digitally and edited to 200 ms duration.

A total of 1000 stimuli, including frequent 1000 Hz (n=650), infrequent 2000 Hz

tones (n=200) and novel sounds (n=150) were delivered to each subject with an inter-

stimulus interval of 1.0-1.3 seconds. The subjects were instructed to click a mouse each

time they heard the 2000 Hz tone. With frequent breaks (e.g. approximately three minutes

of rest every five minutes), the data collection process lasted about 30 minutes per subject

with each session preceded by a 1 minute practice session without the novel sounds.

Each recording is 1 second in duration with a 200 ms prestimulus interval.

The ERPs were recorded from 19 tin electrodes embedded in an elastic cap, using

linked mastoids as reference. The electrode impedances were kept below 20 kQ to yield a

good signal with the high-impedance MANSCAN amplifier system used in the study.
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Artifacts were identified and rejected by the EEG technician. The remaining scalp poten-

tials were amplified, digitized at 256 Hz/channel (19 channels) and stored.

The averaging protocol involved averaging 30-85 recordings per patient yielding 1-3

recordings per patient. The variability inherent in ERPs ensures that no two recordings

are ever identical and therefore separate averages were all included in the analysis to pro-

vide additional data. All averages have been notched filtered at 59-61 Hz and baselined

with the prestimulus interval.

Four of the original 32 subjects were unable to complete the study due to various

reasons, and hence their recordings were excluded from further analysis. All multiple

averages from the 28 remaining subjects, a total of 75 recordings, 26 from AD and 49

from normal controls, were therefore analyzed. In the analysis of these signals, "multiple

averages" refers to those 1-3 averages (30-40 recordings per average) per patient while

"overall average" refers to the average of all signals (80-90 recordings per average).

These recordings have been utilized in different training/testing schemes in order to gain

an understanding of the dynamics of the data. The training/testing sets are defined in dif-

ferent ways according to the averages used and level of cross validation. This is ex-

plained further in Section 5.4.

4.2 APPROACH

Data from the Pz electrode in response to the target tones were used since previous stud-

ies have indicated this particular electrode to have the strongest response to the target

tones in the oddball paradigm. The data were analyzed using several methods which

have been described in detail in the previous sections. Prior to analysis the data were
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normalized by subtracting the mean and dividing by the maximum. The wavelet trans-

form and PSD have been implemented to extract features from the signal.

The preprocessed signals were then used to train an MLP neural network to obtain

initial classification performance. The Learn++ algorithm is then implemented on only

the wavelet data because the performance for the PSD values with the MLP were poor.

Learn++ has the ability to learn new data without forgetting previously acquired knowl-

edge and without requiring access to any of the previously seen data, even when the new

data introduce new classes. The classification performance of Learn++ is similar to that

of a single MLP, however, Learn++ is equipped with the ability to learn incrementally

which for this particular application may prove useful in the future if more classes are

added. With this in mind, after the initial analysis with an MLP and also with the

Learn++ algorithm, data fusion was performed with the two sets of wavelet data using a

data fusion method with Learn++.

Rowan

Universfy

Figure 4. 1: Overview of analysis.
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4.3 OUTLINE OF METHOD AND REASONING

Analysis of the wavelet decomposition shows that complimentary information may be

extracted for each different choice of mother wavelet. Figure 2 (a) and (b) show a 7-level

decomposition of the same signal, decomposed using the Daubechies 4 and Quadratic B-

Spline wavelets. The differences between the decomposition of the same signal using the

two different types of wavelets imply that they may be extracting different information,

albeit very minor, from the same signal. The analysis with the MLP and Learn++ show

that even though different information may be extracted from the signals, the two wave-

lets give similar performance. This may be the case if each wavelet was extracting dif-

ferent, relevant and complementary information from the signal. If this is indeed the

case, then combining the feature sets could yield a better classification performance and

therefore could increase the predictive value of a classifier. Figure 3.11 shows a diagram

involving an ensemble of classifiers that are each trained with a set of features and com-

bined through a weighted majority voting scheme to obtain classification.
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Figure 4. 2: Wavelet decomposition comparison (normal subject)-(a) Daubechies 4
(DB4), (b) Quadratic B-Spline (QBS).
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CHAPTER 5

RESULTS

5.1 K-FOLD CROSS VALIDATION

A cross-validation procedure is implemented to estimate the true generalization perform-

ance of each of the classifiers or ensemble of classifiers. This method can be used to es-

timate any statistical parameter with a measure of certainty in the original estimate [65,

66]. The dataset is divided into k-blocks as shown in Figure 5. 1. The network is trained

with all k-1 blocks and the kth block is used as the testset. This procedure is repeated k

times so that each block is used as a testset one time. The average of the performance

values on each of the testsets is the k-fold cross-validation performance on the dataset.

Training Blocks
(dark)

Test Block
(light)

. Block K

_tt

at at

ck K-1

Block I

Figure 5. 1: K-fold cross validation [58].
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5.2 OVERVIEW OF RESULTS

Wavelet analysis was performed on the dataset using the Daubechies 4 and quadratic B-

spline wavelets. These different feature sets were used to train and test an MLP neural

network and Learn++. The power spectral analysis was also performed on the signal

however classification was attained solely with an MLP.

Performance figures are provided in this chapter. The performance of both types

of wavelets was compared using the Learn++ algorithm and an MLP. Overall results for

Learn ++ and MLP were generally similar. It was expected that through the use of

Learn++ with these features and further, through the use of data fusion with Learn++, the

performance could increase, therefore the results for data fusion of the two types of

wavelets are shown.

5.3 RESULTS USING PSD

Five-fold cross validation was performed on power spectral density values for the follow-

ing breakdown of the frequencies:

[1] (0.25 - 1.50 Hz) deltal
[2] (1.25 - 2.50 Hz) delta2
[3] (2.25 - 3.50 Hz) delta3
[4] (3.25 - 4.75 Hz) thetal
[5] (4.50 - 6.00 Hz) theta2
[6] (5.75 - 7.50 Hz) theta3
[7] (7.25 - 9.00 Hz) alphal
[8] (8.75 - 10.50 Hz) alpha2
[9] (10.25 - 12.00 Hz) alpha3
[10] (11.75 - 13.50 Hz) alpha/beta
[11] (13.25 - 16.00 Hz) betal
[12] (15.75 - 18.50 Hz) beta2
[13] (18.25 - 21.00 Hz) beta3
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Table 5. 1: MLP performance from 5-fold crass validation with PSD values from fre-
quencies 18.5 Hz and below.

HID- ER- 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
DEN ROR

LAYER GOAL
NODES

20 68.0 68.0 60.0 53.3 63.3 67.3 56.0 63.3 75.3 56.7
25 64.0 70.7 61.3 60.7 56.0 60.7 60.7 60.7 64.0 70.7
30 67.3 71.3 64.0 63.3 60.0 63.3 64.0 60.0 74.7 68.0
35 64.0 67.3 68.0 57.3 64.7 68.0 60.0 70.7 67.3 56.0

Only the overall averages were used for this analysis. The frequency bands were

left slightly overlapping so that no information was lost from the signal. The conventional

EEG bands were broken down to explore the frequencies thoroughly. The power spectral

density was estimated using a modified periodogram method. The frequency bands were

explored systematically with the best results achieved using the first 12 frequency bands

together (shown in Table 5. 1).

An MLP was used for classification with different numbers of hidden layer nodes

set to 20, 25, 30, 35 and error goal 0.01 to 0.1 in increments of 0.01. The best results ob-

tained from this method was 75.3% using the first 12 frequency bands and with the net-

work having 20 hidden layer nodes and an error goal of 0.09.

The results for the power spectral density range from 53% to 75% depending on

the network parameters. These results indicate that the power spectral density values

may not be adequate for this classification task.

5.4 RESULTS USING WAVELET ANALYSIS

For the signals used in the analysis, the following diagram summarizes the details of the

decomposition using the DWT. The original signals were 257 samples long and the high-

74



www.manaraa.com

highest frequency in the signals was 128 Hz. The breakdown of the signal at each level

of the DWT can be seen in the representation in Figure 5. 2.

Extra coefficients are added on to the wavelet coefficients during the filtering im-

plementation as a results of the convolution operation. The number of coefficients for

each detail level and the highest level approximation is stored in a length vector, L as:

L = [L(a7) L(d7) L(d6)...L(dl) L(s)] (where L(s) is the length of the entire signal). The

actual number of coefficients at each level varies with each type of wavelet and these

values are given below in the section for each wavelet.

Normalized ERP
x[n] Length: 257 ,

Length 2
B' O-Hz

Coefficients:
Length: 2
B' 1-2Hz

Figure 5. 2: 7-level wavelet decomposition.
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5.4.1 DAUBECHIES 4

The number of coefficients per decomposition level was determined and is outlined in

Table 5. 2. The coefficients for the levels a7, d7, d6, d5, d4 were used which correspond

to the frequencies below 16 Hz. This means that only the first 62 coefficients were used

for the analysis. The breakdown of the frequency bands is according to the values calcu-

lated in the block diagram shown previously.

Omitting the highest frequencies of the signal results in a good amount of data

reduction, but how much is too much? The approximation of the signal with the exclu-

sion of the superfluous coefficients can be seen by plotting the reconstruction of the sig-

nal. Figure 5. 3 shows the original signal and its reconstruction with only the specified

number of coefficients as a comparison. The approximation using 62 coefficients closely

follows the original signal indicating that there is no significant loss of information.

Figure 5. 4 shows the decomposition of a signal from (a) a normal control and (b)

AD patient. Variations in the signals when compared to each other are obvious, however

this is not always the case when just using visual inspection methods. The decomposition

of the signal makes the components occurring at different frequencies more obvious

when plotted in this manner.

Table 5. 2: Number of coefficients in each decomposition level for Daubechies 4.
approximation detail detail detail detail detail detail detail
level 7 vel l 7 levlevel evel 5 level 4 level 3 level 2 level 1
8 8 10 14 22 38 69 132
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(a)

(c) (d)

)0 -200-100 0 100 200 300 400 500 600 700 800

Figure 5. 3: Approximation of Daubechies 4 wavelet coefficients (+++) compared to
original signal (solid line). Number of coefficients-(a) 40, (b) 62, (c) 100, and (d) 169.

The results presented in Table 5. 3 through Table 5.6 are the classification performance

of the wavelet coefficients using an MLP neural network. The results are labeled for the

level of cross validation and training/testing scenarios used. The data for training and

testing was randomly selected in all cases with the multiple averages per patients kept

together in either the training or testing dataset, never both. The number of AD and

number of normal subjects were evenly split in the training or testing data as well. The

network parameters, specifically the number of hidden layer nodes were varied from 20

to 35 and the error goal was varied from 0.005 to 0.1 in increments of 0.005. This was

done to test the different variations of the network to determine the architecture that

yields the best performance values given the training/testing scheme. The results for
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Figure 5. 4: Wavelet decomposition, (a) normal subject, (b) AD subject.
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training with half the data and testing with the other half of the data, 3, 5, and 10-fold

cross validation with training/testing schemes mentioned in the captions are shown in the

following tables. (These parameters are the same for the results given in Section 6.3.2 for

the quadratic B-spline wavelet). The performance for training/testing with half the data

was calculated using the best 10 out of 30 trials. The leave-one-out algorithm (limiting

case for cross validation) is also included to give a better estimate of the performance of

the algorithm.

5.4. la MLP RESULTS FOR DAUBECHIES 4

Consistently, regardless of the level of cross validation, it appears that training and test-

ing with the overall averages yields better results. Averaging the signals together

smoothes the curves slightly and removes some of the noise, so this outcome makes

sense.

The confidence intervals are large in most cases due to the small amount of data

for this study. There are 28 patients total, so for 3-fold cross validation there are 9-10

subjects in the test set at a given time and for 10-fold cross validation there are only 2-3

subjects in the test set for each of the ten iterations. The results from training with half

and testing with half of the data is the average over ten trials. The confidence intervals

are smaller in this case because there is less variation between each different trial.

Table 5. 3: Train /2, test 1 -- result is the overall average over ten trials (32 hidden layer
nodes, 0.035 error goal).

DB4-MLP, 0.05 error goal, 20 hidden layer nodes

SENSITIVITY 80.0+/-13.1

SPECIFICITY 87.8+/-6.0

+ PRED. VALUE 81.6+/-7.2

OVERALL PERF. 85.0+/-3.3
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Table 5. 4: 3-fold cross validation-(a) train multiple/ test overall averages, (b)train/test
overall averages, (c)train/test multiple averages, and (d)train multiple/test multiple +
overall averages.

(a) 0.075 error goal, 28 hidden layer nodes (b) 0.02 error goal, 22 hidden layer nodes
SENSITIVITY 77.8+/-21.8°/ SENSITIVITY 77.8+/-43.5%

SPECIFICITY 94.4+/-10.9° SPECIFICITY 100.0+/-0.0°
PRED. VALUE 88.9+/-21.8/ + PRED. VALUE 100.0+/-0.0%

O/-12.60/4 JO88.9+/-12.6 VERALL PERF.92.6+/-14.5

(c) 0.06 error goal, 33 hidden layer nodes and
0.075 error goal, 30 hidden layer nodes (d) 0.065 error goal, 23 hidden layer nodes
SENSITIVITY 52.1+/-27.9° SENSITIVITY 59.6+/-10.6%
SPECIFICITY 89.6+/-4.80 SPECIFICITY 88.0+/-15.8%
+PRED. VALUE 71.7+/-11.8 0/ + PRED. VALUE 73.5+/-30.9%
OVERALL PERF. 676.7+/-8.8/_ OVERALL PERF. 78.1+/-12.5%

Table 5. 5: 5-fold cross validation-(a) train multiple/ test overall averages, (b)train/test
overall averages, (c)train/test multiple averages, and (d)train multiple/test multiple +
overall averages.

(a) 0.1 error goal, 27 hidden layer nodes, 0.03 error
goal, 20 hidden layer nodes, and 0.075 error goal,
21 hidden layer nodes (b) 0.04 error goal, 32 hidden layer nodes
SENSITIVITY 70.0+/-24% SENSITIVITY 80.0+/-24/

SPEFICIT 95.0+/-9. SPCFICITY 95.0+/-9.8%/
PRED. VALUE 93.3+/-13.1° - PRED. VALUE 93.3+/-13.1%

OVERALL PERF. 7 85.3+/- V ERAL L OVERALL PERF. 90.0+/-8.0%
(c) 0.095 error goal, 28 hidden layer nodes d) 0.095 error goal, 35 hidden layer nodes
SENSITIVITY 60.0+/-23.9% SENSITIVITY 52.5+/-31.40/
SPECIFICITY 90.1+/-9.8 SPECIFICITY 93.6+/-9.5°/

PRED. VALUE 77.5+/-19.6/ +PRED. VALUE 67.1+/-36.6/
OVERALL PERF. T79.2+/-10.5 OVERALL PERF. 78.7+/-12.6°/

Table 5. 6: 10-fold cross validation-(a)train multiple/ test overall averages, (b)train/test
overall averages, (c)train/test multiple averages, and (d)train multiple/test multiple +
overall averages.

(a) 0.065 error goal, 22 hidden layer nodes (b) 0.025 error goal, 25 hidden layer
SENSITIVITY _ 70.0+/-29.9% SENSITIVITY 80.0+/-26.1°/
SPECIFICITY 95.0+/-9.8° SPECIFCITY 95.0+/-9.8/
+ PRED. VALUE 65.0+/-29.4% + PRED. VALUE 35.0+/-29.4°/
OVERALL PERF. 86.7+/-10.7% _OVERALL PERF. 86.7+/-13.6°/
(c) 0.07 error goal, 25 hidden layer nodes (d) 0.075 error goal, 33 hidden layer nodes
SENSITIVITY 63.3+/-26.6% SENSITIVITY 62.5+/-24.5°/
SPECIFICITY 86.3+/-10.7% SPECIFICITY 92.0+/-7.0°
+ PRED. VALUE 60.0+/-25.5/- +PRED. VALUE 74.2+/-21.3%
OVERALL PERF. 74.4+/-16.6% OVERALL PERF. 81.1+/-9.3/
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The performance values for all networks are better than the clinical evaluation

performance of 75% except for the performance from 10-fold cross validation while

training/testing with the multiple averages. Considering the confidence intervals for each

of the cases, positive predictive value, sensitivity and specificity, most of these ranges

include the values for a clinical evaluation. In summary, the performance of the algo-

rithm is about par with the performance values given for a clinical evaluation.

5.4. lb LEARN++ RESULTS FOR DAUBECHIES 4

Results with Learn++ were achieved using weak MLP networks. The parameters for the

neural networks were varied: number of hidden layer nodes (15, 20, 25, 30) and error

goals (0.15, 0.1, and 0.2 for some cases). The number of classifiers was also varied.

Training/testing with half the data over ten trials was implemented with Learn++ and the

results are shown in Table 5. 7. The performance for this is slightly better than those

achieved with the same scenario with the MLP. Five-fold cross validation was performed

with two variations in the data-training/testing with overall averages and training/testing

with the multiple averages. Results are then compared with those of the MLP.

Table 5. 7: Learn++ results for training/testing with half the data using the overall aver-
ages.

SENSITIVITY 70.0+/-10.5

SPECIFICITY 96.7+/-4.6

+PRED. VALUE 95.1+/-6.5

OVERALL PERF. I 87.1+/-2.8
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Table 5. 8: Learn++ Results from training/testing with multiple averages.

LEARN ++ RESULTS WITH MULTIPLE AVERAGES

# CLAS- ERROR # HIDDEN
SIFIERS GOAL LAYER OVERALL + PRED

NODES PERF. VALUE SPECIFICITY SENSITIVITY
20 0.1 30 71.3+/-8.4% 51.3+/-32.1% 83.2+/-17.7% 56.7+/-35.2%
15 0.1 25 72.0+/-9.6% 60.8+/-15.2% 84.3+/-5.3% 53.3+/-28.1%
10 0.15 30 77.7+/-5.0% 92.0+/-15.7% 96.4+/-7.1% 45.0+/-19.0%
5 0.2 30 73.8+/-8.8% 71.4+/-23.6% 81.0+/-17.0% 60.0+/-13.1%
3 0.1 30 74.7+/-10.0% 57.0+/-32.4% 90.7+/-5.7% 46.7+/-31.3%

Table 5. 9: Learn++ Results from training/testing with overall averages.

LEARN ++ RESULTS WITH OVERALL AVERAGES
# CLAS- ERROR # HIDDEN
SIFIERS GOAL LAYER OVERALL +PRED

NODES PERF. VALUE SPECIFICITY SENSITIVITY
20 0.15,0.1 25 82.0+/-12.5% 73.3+/-38.1% 95.0+/-9.8% 60.0+/-36.7%
15 0.15 15 81.3+/-12.5% 90.0+/-19.6% 86.7+/-26.1% 70.0+/-24.0%

10 0.1 15 85.3+/-7.3% 93.3+/-13.1% 95.0+/-9.8% 70.0+/-24.0%
5 0.1 30 90.0+/-13.1% 80.0+/-39.2% 100.0+/-0.0%0 70.0+/-39.2%
3 0.1 30 82.0-10.5% 83.3+/-20.7% 83.3+/-20.7% 80.0+/4.0%

In this case the overall averages produce better classification performance com-

pared to the multiple averages as they did with the MLP. Learn++ also yields a per-

formance that in overall is comparable to that of a clinical evaluation. These results also

indicate that Learn++ performs as well as a single strong classifier for classifying the

Daubechies 4 wavelet coefficients.

5.4. Ic LEAVE-ONE-OUT RESULTS FOR DAUBECHIES 4

The leave-one-out algorithm is the limiting case of cross validation and therefore gives

the best estimate of the generalization performance of the classifier for the particular

dataset in use. Results are shown in Table 5. 10 and Table 5. 11 for a single MLP and the

Learn ++ algorithm, respectively. The results between the two algorithms are identical.

The low values for the positive predictive value, sensitivity and specificity are explained
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Table 5. 10: Leave-one-out results-MLP, 0.05 error goal, 20 hidden layer nodes.

AVERAGE CI
OVERALL PERF. 82.1429 14.4466
+ PRED. VALUE 21.4286 15.4776

SENSITIVITY 21.4286 15.4776

SPECIFICITY 60.7143 18.422

Table 5. 11: Leave-one-out results-Learn++ 0.15 error goal, 20 hidden layer nodes, 3
classifiers.

_AVERAGE CI
OVERALL PERF. 82.1429 14.4466
+ PRED. VALUE 21.4286 15.4776

SENSITIVITY 21.4286 15.4776
SPECIFICITY 60.7143 18.422

as follows. Since there is only one instance being tested each of the 28 iterations, one of

the values for A, B, C and D (refer to Appendix A) will be 1 while the rest will be 0.

Whenever A is 1, the positive predictive value and sensitivity are 100% and whenever D

is 1, the specificity is 100%. IfB or C is 1 at any time then all values are 0 because these

are only 1 if an instance was misclassified. This means that the positive predictive value

and sensitivity will be zero when a normal subject is classified and can only have a value

when an AD patient is classified correctly (the highest these values could be for this data-

set would be 35.7% or 10/28. The reverse is the case for specificity, it will only have a

value when a normal patient is classified correctly (the highest possible value would be

64.3% or 18/28). Also for each case, the overall performance can be calculated by

(A+D)/(A+B+C+D).

Since only one instance is classified at a time, the overall performance turns out to

be the sum of the specificity and positive predictive values which is actually the sum of
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the patients classified correctly. The overall performance values are the only values that

are meaningful in this case.

5.4.2 QUADRATIC B-SPLINE

The implementation of the quadratic B-spline wavelet was performed using filter coeffi-

cients given in [52] and the sub-band coding scheme described in section 3.2.6. The

number of coefficients used was determined and are shown in Table 5. 12. The coeffi-

cients for the levels a7, d7, d6, d5, d4 were used which correspond to the frequencies be-

low 16 Hz giving a total of 121 coefficients.

Just as with the db4, the coefficients were plotted to determine if there are signifi-

cant differences in altering the number of coefficients used. This type of wavelet per-

forms best with 121 coefficients, which incidentally corresponds to the 0-16 Hz fre-

quency band and does poorly when more coefficients are added. The reconstruction of

the signals in Figure 5. 5 using the specified number of wavelet coefficients seems to

make this more obvious.

In Figure 5. 6 the decomposition of a normal control and that of an AD patient are

shown. As with the Daubechies 4 wavelet in the previous section, differences can be

seen between the two signals, however this is not always the case. The results for cross

validation with an MLP are provided in Table 5. 13 through Table 5. 16 for the quadratic

B-spline wavelet.

Table 5. 12: Number of coefficients in each decomposition level for Quadratic B-spline
wavelet.

approximation detail detail detail detail detail detail detail
level 7 level 7 level 6 level 5 level 4 level 3 level 2 level 1
20 20 22 26 33 48 78 138
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Figure 5. 5 Approximation of Quadratic B-Spline wavelet coefficients (red) compared to
original signal (blue). Number of coefficients-(a) 88, (b) 121, (c) 169 and (d) 247.
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Figure 5. 6: QBS Wavelet Decomposition, (a) normal subject, (b) AD subject.
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5.4.2a MLP RESULTS FOR QUADRATIC B-SPLINE

Table 5. 13: Train /2, test /2 -- result is the overall average over ten trials.

QBS-MLP-0.085 error goal, 34 hidden layer nodes

SENSITIVITY 64.0+/-9.8

SPECIFICITY 91.1+/-5.4

+ PRED. VALUE 84.2+/-9.3

OVERALL PERF. ·. 81.4+/-3.1

Table 5. 14: 3-fold cross validation-(a)train multiple/test overall averages, (b)train/test
overall averages, (c)train/test multiple averages, and (d)train multiple/test multiple +
overall averages.

(a) 0.065 error goal, 32 hidden layer nodes (b) 0.08 error goal, 20 hidden layer nodes
SENSITIVITY 77.8+/-43.6% SENSITIVITY 80.6+/-19.6%

SPECIFICITY 88.9+/-21.8% SPECIFICITY 94.4+/-10.9%

PRED. VALUE 86.7+/-26.1% +PRED. VALUE 91.7+/-16.3%

OVERALL PERF. 85.2 +/-14.5% _ VERALL PERF. 89.7+/-11.3%
(c) 0.05 error goal, 27 hidden layer nodes (d) 0.05 error goal, 28 hidden layer nodes
SENSITIVITY 51.5+/-8.9% SENSITIVITY 65.6+/-12.7%

SPECIFICITY 93.9+/-0.5% SPECIFICITY 94.2+/-11.4°/

+PRED. VALUE 80.2+/-6.1°% PRED. VALUE 91.1+/-17.4°/

OVERALL PERF. 79.1+/-7.2% VERALL PERF. 84.7+/-3.6%

Table 5. 15: 5-fold cross validation-(a)train multiple/test overall averages, (b)train/test
overall averages, (c)train/test multiple averages, and (d)train multiple/test multiple +
overall averages.

b) 0.065 error goal, 21 hidden layer nodes, 0.06
(a) 0.06 error goal, 34 hidden la er nodes error goal, 32 hidden layer nodes
SENITIVITY 80.0/-24.0% S SITIVITY 80.0+/-24.0%

SPECIFICITY 95.0+/-9.8% SPECIFICITY 86.7+/-16.0%

+PRED. VALUE 93.3+/-13.1% - PRED. VALUE 83.3+/-20.7%

OVERALL PERF. 89.3+/-8.6%/ VERALL PERF. 84.7+/-14.6%
(c) 0.07 error goal, 20 hidden layer nodes (d) 0.06 error goal, 32 hidden layer nodes
SENSITIVITY 51.7+/-13.1%/ SENSITIVITY 76.7+/-27.0%

SPECIFICITY 87.1+/-7.7/ SPECIFICITY 88.0+/-20.40/

+PRED. VALUE 72.0+/-16.6°/ +PRED. VALUE 63.3+/-20.7/

OVERALL PERF. 74.8+/-5.4% OVERALL PERF. 83.9+/-13.6/
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Table 5. 16: 10-fold cross validation-(a) train multiple/test overall averages,
(b)train/test overall averages, (c)train/test multiple averages, and (d)train multiple/test
multiple + overall averages.

(b) 0.005 error goal, 29 hidden layer nodes, 0.065
(a) 0.085 error goal, 20 hidden layer nodes error goal, 33 hidden layer nodes
SENSITIVITY 70.0+/-29.9% SENSITIVITY 90.0+/-19.6%

SPECIFICITY 90.0+/-13.1% SPECIFICITY 90.0+/-13.1%

+PRED. VALUE 65.0+/-29.4% + PRED. VALUE 80.0+/-21.7%

OVERALL PERF. 83.3+/-14.6% OVERALL PERF. 90.0+/-10.0%
(c) 0.09 error goal, 29 hidden layer nodes (d) 0.06 error goal, 25 hidden layer nodes
SENSITIVITY 63.3+/-22.7% SENSITIVITY 65.0+/-22.2%

SPECIFICITY 87.5+/-14.5% SPECIFICITY 90.4+/-7.6%

-PRED. VALUE 71.7+/-21.3% + PRED. VALUE 79.7+/-16.2%

OVERALL PERF. 79.0+/-10.3/% OVERALL PERF. 81.3+/-9.6%

The best performance for both 3-fold and 10-fold cross validation was achieved

with the overall averages, however, with the 5-fold cross validation the best performance

is given through training with the multiple averages and testing with the overall averages.

For all test cases it is observed that the training and testing with the multiple averages

yields a poorer performance for all levels of cross validation when compared with the

other test scenarios.

Overall, in this case as with the Daubechies wavelet, the performance values are similar

to the performance of a clinical evaluation and the confidence intervals in most cases in-

clude the range of the clinical evaluation. This is significant because it suggests that

similar performances can in fact be obtained without requiring the expensive university

hospital setting clinical evaluation.

5.4.2b LEARN++ RESULTS FOR QUADRATIC B-SPLINE

Results for Learn++ are shown in Table 5. 17 to Table 5. 19. For training/testing with

half the data, Learn++ performs slightly lower than the MLP, however, when the
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Table 5. 17: Learn++- overall averages, train/test with half the data.

SENSITIVITY 60.0+/-10.1
SPECIFICITY 91.1+/-4.4

+ PRED. VALUE 81.0+/-8.7
OVERALL PERF. 80.0+/-3.5

Table 5. 18: Learn++ results from training/testing with the multiple averages.

# CLAS- ERROR # HIDDEN
SIFIERS GOAL LAYER OVERALL + PRED

NODES PERF. VALUE SPECIFICITY SENSITIVITY
20 0.1 15 83.3+/-8.3% 87.1+/-17.2% 90.9+/-13.8% 70.0-+/-11.1%
15 0.15 20 76.7+/-9.1% 61.7+/- 32.5% 92.2+/-7.0% 48.3+/-25.5%
10 0.1 25 72.1+/-14.5% 66.0+/-21.1% 84.8+/-11.9% 50.0+/-27.3%
5 0.1 20 71.1+/-6.6% 49.3+/-26.6% 89.9+/-5.7% 35.0+/-22.2%
3 0.15 20 70.4+/-13.4% 45.6+/-25.0% 83.1+/-10.1% 50.0+/-35.8%

Table 5. 19: Learn++ results from training/testing with the overall averages.

LEARN ++ RESULTS WITH OVERALL AVERAGES
# CLAS- ERROR # HIDDEN
SIFIERS GOAL LAYER OVERALL + PRED

NODES PERF. VALUE SPECIFICITY SENSITIVITY
20 0.1 30 78.7+/-6.1% 73.3+/-38.1% 95.0+/- 9.8% 50.0+/-31.0%
15 0.15 30 .85.3+/-7.3% 100.0+/-0.0% 100.0+/-0.0% 60.0+/-19.6%
10 0.1 30 82.0+/-10. 5% 83. 3+/-20.7% 88.3+/-14.2% 70.0+/-24.0%
5 0.1 25 75.3+/-7.0% 70.0+/-39.2% 95.0+/-9.8% 40.0+/-19.6%
3 0.1 25 78.0+/- 8.9% 66.7+/-35.8% 90.0+/-12.0% 60.0+/-36.7%

confidence intervals are considered, the differences are negligible. Overall the results are

comparable to those of the MLP and a clinical evaluation.

5.4.2c LEAVE-ONE-OUT RESULTS FOR QUADRATIC B-SPLINE

The discussion in Section 5.5. lc for the leave-one-out algorithm applies to these results

as well. The comparison between Learn++ and an MLP for the quadratic B-spine wave-

let show that the MLP performs slightly better in the limiting case. Since the other levels

of cross validation for this wavelet performed better than the MLP while this case
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Table 5. 20: Leave-one-out results-MLP, 0.05 error goal, 25 hidden layer nodes.

AVERAGE CI
OVERALL PERF. 75 16.3333
+ PRED. VALUE 25 16.3333
SENSITIVITY 25 16.3333
SPECIFICITY 50 18.8601

Table 5. 21: Leave-one-out results-Learn++, 0.05 error goal, 25 hidden layer nodes, 3
classifiers.

AVERAGE CI
OVERALL PERF. 71.4286 17.0403
+ PRED. VALUE 14.2857 13.1993
SENSITIVITY 14.2857 13.1993
SPECIFICITY 57.1429 18.6667

performed worse, it can be said that these results indicate that Learn++ performs as well

as a single strong classifier.

5.6 RESULTS USING DATA FUSION

Results for data fusion have been obtained using the two sets of wavelet coefficients as

features. Results are presented in Table 5. 22 and Table 5. 23 for the overall and for the

multiple averages respectively. Five-fold cross validation was performed for comparison

with previous results using the Learn++ algorithm. The number of classifiers was kept

the same for each dataset to avoid any bias toward a particular set.

The performance for fusion with the overall averages is the same as the better of

the two datasets. The performance for fusion with the multiple averages is slightly im-

proved from each of the individual datasets but not significantly. The values for the fu-

sion performance for the overall and for the multiple averages are similar to the results

from each type of wavelet with Learn++. The results for this data fusion imply that no
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additional information is gained by using both types of wavelets together since there is no

significant improvement in the performance.

Table 5. 22: Data fusion results from five-fold cross validation using overall averages.

Feature set 1 Feature set 2
Quadratic B-spline Daubechies 4 coef-

coefficients ficients (0.1error
(0.1 error goal, 35 goal, 30 hidden
hidden layer nodes, layer nodes, 10 Data fusion of
10 classifiers) classifiers) both sets

OVERALL PERFORM-
ANCE AVERAGE 78.0+/-13.6 82.0+/-1.6 82.0+/-1.6
POSITIVE PREDICTIVE
VALUE AVERAGE 73.3+/-22.2 93.3+/-13.1 93.3+/-13.1
SENSITIVITY AVERAGE 71.7+/-19.6 95.0+/-19.6 95.0+/-19.6
SPECIFICITY AVERAGE 90.0+/-26.1 60.0+/-9.8 60.0+/-9.8

Table 5. 23: Data fusion results from five-fold cross validation using multiple averages.

Feature set 1 Feature set 2
Quadratic B-spline Daubechies 4 coef-
coefficients ficients (0.1 error
(0.1error goal, 30 goal, 30 hidden
hidden layer nodes, layer nodes, 5 Data fusion of
5 classifiers) classifiers) both sets

OVERALL PERFORM-
ANCE AVERAGE 70.6+/-11.4 72.2+/-10.1 73.0+/-12.8
POSITIVE PREDICTIVE
VALUE AVERAGE 51.4+/-31.7 70.0+/-24.0 55.0+/-36.0
SENSITIVITY AVERAGE 55.0+/-27.1 43.3+/-20.7 41.7+/-28.3
SPECIFICITY AVERAGE 81.2+/-18.4 89.0+/-8.0 91.5+/-9.0
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CHAPTER 6

CONCLUSIONS

6.1 SUMMARY OF ACCOMPLISHMENTS

It has been shown that different types of wavelets are suitable for identifying features of

an EEG signal that are characteristic of AD. The two types of wavelets used in this study

have each performed as well as a clinical evaluation, in most cases, signifying that they

are each capable of isolating the features of interest within the relevant frequency range.

In comparing the two types of wavelets and their performance using the MLP with differ-

ent training/testing schemes, it appears that the both wavelets perform better in classify-

ing the overall averages. The overall results are similar for both types of wavelets and

these performance values with their confidence interval include the clinical evaluation

values. This suggests that similar performances to a clinical evaluation can be obtained

through the automated algorithm using Learn++ or an MLP.

Learn++ had not previously been used for this classification problem and has

demonstrated performances similar to that of a single strong classifier. The results from

Learn++ were better than the results for the MLP in most cases for the Quadratic B-

Spline wavelet however for classifying the Daubechies 4 wavelet coefficients, Learn++

performance was similar to that of a single strong classifier. The use of Learn++ in the

problem allows for more analysis when additional data becomes available. The incre-

mental learning feature of Learn++ could allow several additional classes to be intro-
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duced into the problem such as the various degrees of severity of AD or classes including

other forms of dementia.

It was expected that if the two types of wavelets were extracting different infor-

mation from the signals, data fusion of this relevant information would provide a more

informed classification decision, thereby improving upon previous methods. For the

multiple averages with data fusion, the performance is slightly better than each of the in-

dividual cases but not by an amount significant enough to suggest the wavelets extract

complimentary information from the signals. The results for both the overall and multi-

ple averages indicate that the wavelets are not likely extracting complementary informa-

tion from the signals since the combination of these two wavelets does not consistently

produce a more informed decision than either individually.

The use of data fusion for combining features is a feasible approach to this classi-

fication problem. Data fusion should improve the classification performance if the fea-

tures are providing different relevant information. In summary, the data fusion method

using Learn++ provides a building block for future work in this area. The performance

with two feature sets consisting of the wavelet coefficients did not improve upon the in-

dividual feature results however with the right features, this method has the potential to

provide a more informed classification decision.

The use of data fusion, as well as the use of a single MLP or Learn++ as an auto-

mated program is a feasible approach for diagnosing AD in a community health clinic.

The accuracy of each is similar to that of a clinical evaluation but is not limited to a re-

search hospital setting.
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6.2 SOURCES OF ERROR

The patients recruited for this study were diagnosed using a clinical evaluation. As men-

tioned previously this type of evaluation has an accuracy of only 75% however the classi-

fication algorithms were trained as if this were 100% (the 'gold standard'). The original

misdiagnosis of a test subject is a potential source of error in this study. The only way to

obtain a diagnosis with 100% accuracy is through an autopsy. Inclusion of a post mortem

analysis of the test subjects to obtain the true 'gold standard' would prevent this error.

6.3 RECOMMENDATIONS FOR FUTURE WORK

The use of Learn++ allows for the introduction of new classes which could allow for a

more involved study of these signals, perhaps introducing the degree of severity of AD

indicated in the clinical evaluation. The patients recruited for this study were primarily in

the earliest stages of the disease however there are variations in their clinical scores

which could be partitioned to indicate severity.

The number of wavelet coefficients used for each type of wavelet was limited to

the 16 Hz and below range to be consistent in comparisons between the two types of

wavelets. There may be a more suitable number of coefficients for each wavelet and

should be further investigated. Also, other types of wavelets should also be analyzed.

Additional electrodes should be explored as well as the use of the novel responses

since these have both given interesting results in other studies. Investigation of the co-

herence across different electrodes has given promising results in previous studies dis-

cussed in Chapter 2 and may provide additional information relevant to this study.
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Different features can also be combined with the data fusion classification method

which may serve to increase the performance, provided the feature sets carry complemen-

tary information. Data fusion with the right features should yield a more informed deci-

sion for classification. Additional data would be useful for determining the true perform-

ance of the networks. For this project the additional data from the remaining patients is

crucial for obtaining a better estimate of the true performance of any algorithm devel-

oped.

For any of the algorithms it may be a good idea to determine the cost of a misdi-

agnosis. Would it be worse for a person who is normal to be misdiagnosed as having AD

or for a person with AD to be misdiagnosed as normal? In any of the algorithms, the

weights of the networks could be modified so that a misdiagnosis would be more likely to

occur for the least costly case.
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APPENDIX A

SENSITIVITY, SPECIFICITY AND POSITIVE PREDICTIVE VALUE

Sensitivity = A / A+C
-the probability that a symptom is present given that the person has the disease.

Specificity = D / B+D
-the probability that a symptom is not present given that the person does not have
the disease.

Positive Predictive Value (PPV) = A/A+B
-the probability that a person has the disease given a positive test result
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APPENDIX B

HEISENBERG UNCERTAINTY PRINCIPLE

The more precisely the position is determined, the less precisely the momentum is

known in this instant, and vice versa.

--Heisenberg, uncertainty paper, 1927

An electron moving all by itself through empty space where the particle is

described by certain measured properties of the particle itself. The position of the

electron, its momentum (the electron's mass times its velocity), its energy, and the

time are the properties that appear as "variables" in the equations that describe the

electron's motion.

ApAq > h/4r (B. 1)

AEAt > h /4 (B. 2)

where Aq is the uncertainty of the position measurement, Ap is the uncertainty of the

momentum in the q direction at the same time the q was measured, AE is the

uncertainty in the energy, At is the uncertainty in the time at the same time as the

energy is measured, and h is Planck's constant from quantum theory.

If the position of a moving electron is measured with great accuracy such that

Aq is very small, then Ap is very large. The precision of the position measurement

gets so great that the uncertainty Aq gets so small that it approaches zero, then Ap

gets so large that it approaches infinity or becomes completely undefined.
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If the position is known with certainty then this gives uncertainty to the exact

momentum.

For wavelets, the window length defines the time and frequency resolutions.

According to the Heisenberg's inequality there cannot be arbitrarily good time and

frequency resolutions at a given time. There can be one or the other at any one time

but never both at once.
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APPENDIX C

GLOSSARY OF TERMS

Ergodic signal - a positive recurrent aperiodic state of a stochastic system

Orthonormal basis- A subset v,,v2,...,vk of the vector space V, is said to be

orthonormal if the inner product, < v,,v. > when i • j., meaning that the vectors

are mutually perpendicular.

Orthogonal basis - Set of vectors {x, } that satisfy xjxk = CkSk and x'x, = C85,

where Csk, C' are constants (not necessarily equal to 1), 6Sk is the Kronecker delta.

When the constants are all equal to 1, then the set of vectors is called an orthonormal

basis.

Biorthogonal basis - two different bases which are orthogonal to each other, but each

do not form an orthogonal set.

Frame- a system that is more or less tight depending on how well the energy of the

signal is maintained in the decomposition.
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APPENDIX D

DIPOLE SOURCE ANALYSIS

In normal brains, distributions of neurons are approximately equally activated by

active current generators. This type of activation produces: (1) uniform electric

current density at the cortical surface; (2) currents within the cortical sulci (grooves)

that cancel each other; and (3) uniform distribution of the scalp potential as a result.

When damage exists, wither cortically or subcortically, randomly oriented electric

current sources arise becasue the sulcal currents no longer cancel out and therefore

the scalp potential becomes less uniform.

To determine the loss of uniformity of an observed alpha EEG potential distribution,

various distributions of source current dipole models are simulated to find the best

fitting model. The best model is given as the smallest mean squared difference

between the alpha dipole potential of the model and the subject at each electrode,

summed across all electrodes. This leads to the dipolarity, D, of the subject defined

as:

D = J-((obs -UdP,)'}/(ob2s D@. 1)
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APPENDIX E

MUTUAL INFORMATION ANALYSIS

Mutual information quantifies information from one system through the measurement

of another. When applied to EEGs, it can be considered a measure of functional

connectivity. The information in bits is defined as:

1
log2 --- log2 P(x,) (E.1)

Px(x,)

where x, is a measurement drawn from a set X=f{x,, Px(xd is the normalized

histogram of the distribution of values observed for the measurement x and Px(xd is

the probability that an isolated measurement will find the system in the i h element of

the bin. The probabilities are evaluated by constructing a histogram with the

variations of the measurement xg.

The entropy, H, of the system is the amount of information obtained from any

observation of X.

H(X)= -Px(x,)log 2 P(x,) (E. 2)
xl

Before X is measured, this is information is called uncertainty. For Y=yj, H(X) must

be replaced by the conditional uncertainty on X:

Xl, Prx (Y ) l(E. 3)o

where Pxy(x,,y) is the joint probability density for the measurements X and Y that

produce the values Xand Y. H(X I 'Y = YJ ) is indicative of the uncertainty in a
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measurement ofx, given thaty has been measured and found to be equal toyj. The

mean conditional uncertainty on X over yj given Y is known is:

H(X I Y)= PY(yj)H(X I = yj)= -PXY(x,,y )log2[PxY(x,,yj)/P,(yj) (E. 4)
Yj

=H(X,Y)-H(Y) (E.5

where

H(X,Y) = - P (x,, Y )log2[Px (x,,y,)] (E. 6)

The a posteriori uncertainty on X, given a measurement ofy is H(X I f), while the a

priori uncertainty on X is H(X). The amount that a measurement ofy reduces the

uncertainty ofx is

I, = H(X) - H(X I )= H(X)+ H(Y) -H(X,Y) (E. 7)

which can also be expressed as:

IX = PXY,(X,,y,)log 2 Px(XiJ) (E. 8)
',Yj Px (X, ) P(y , )

Ixr is the cross mutual information (CMI), the average mutual information between

the measurements of X and measurements of Y.

The auto mutual information (AMI) is the mutual information between x, and xi+,

given as:

IX, PX, (x(t),x(t + r))log xx, (E.(t)(t + 9)
= Zx x)(t)xgX(t+r) Px (x(t))Px, (x(t + r))

IX(t)yrf+T) is the time-delayed CMI or the mutual information of the EEG between

different electrodes as a function of time delay.
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APPENDIX F

ADDITIONAL RESOURCES FOR INFORMATION ON TESTS USED
IN CLINICAL EVALUATION

For information on Clinical Dementia Rating (CDR), a useful chart can be found at:

htp //www.adrc.wustl.edu/cdrGrid.htm .

For information on Mini Mental Scores (MMS), a copy of the actual exam can be

found at: http://www.merck.com/mrkshared/mm geriatrics/figures/3 8fl j sp

For information on National Institute of Neurological and Communicative Disorders

and Stroke Alzheimer's Disease and Related Disorders Association (NINCDS-

ADRDA) criteria:

http//www.uni-koeln. de/med-fak/neurologie/nest-

dd/english/info/clinical criteria. htm#Alzheimer
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APPENDIX G

BACKGROUND OF QUADRATIC B-SPLINE WAVELETS

"Polynomial spline functions with equally spaced simple knots" are referred to as

"cardinal splines". The setZ of all integers can be considered the "knot sequence"

[56]. B-splines of the nth order are a basis of the subspace of all continuous

piecewise polynomial functions of degree n with derivatives up to n - 1. "n (x) of

this space can be defined as:

0" () = C(i) "(x-0i) (G. 1)

where /f(x) represents the normalized B-spline function of order n with n+2 equally

spaced knots. ft(x) is defined as:

f"(X) = (n-l )(x) * fo(x)= po(x)* pf(x)*...* fo(x), n+l times (G. 2)

The function qb(x) can be determined by its B-spline coefficients, c(i). For Cardinal

Spline Interpolation, the coefficients should be determined such that S"(x) matches

the values of some discrete sequence, f(k) at the knot points: Y(x)=f (k) for {k=-x..

+c} [50,55].

The B-spline wavelet transform is utilized for creating a sequence of

embedded polynomial spline function spaces {S(ni E Z] of order n. This is performed

such that S( ') S(+) for i e Z, where Z is a set of all integers. S'( is a subset of

functions in £2(9? ) that are continuous with continuous derivatives up to the order of
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n-i and are equal to a polynomial of the nth degree on intervals

[k2', (k + 1)2' ] with k E Z [55, 56]

Then

s(" = i (x) = c(,)(k)2, (x - 2' k) (G. 3)
k=-w

where

2i (X) = 2' (G. 4)

fl(x) is the scaling function for a B-spline of the nth order. The wavelet sequence q"

is defined as

q n (k - 1) = ()k b 2n+l (k)* p"(k) (G. 5)

where b2"+' (k) = pf2n+l (k) and p(k) is the binomial kernel given by

p(k)= ( k). k=0,...,n+l (G. 6)

The wavelet function, PI(x), can be calculated once the wavelet and scaling

sequences are determined using the dilation equation:

2 W) = V (: )= q" (k) (x-k) (G. 7)

The finest resolution level for " (x) is given by

(O) (X)= E C(o ) (k) n (x - k) (G. 8)
k=-c

The B-spline wavelet is a polynomial with compact support satisfying the property:

I2 1 P2(x - 2k)k E Z, such that for Equation (E.9), the first term on the right is the

projection of ~no) on S(') and the second term denotes the residual error.
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(o) (x) = d() (k) 2n (x - 2k) + s c(,) (k)/; (x - 2k) (G. 9)
k=-wo k=-m

where d(o) are the details at level 1 and c(s) is the approximation of the signal at level

1. The decomposition can be implemented iteratively up to level I using the wavelet

representation

(o) (x)-= Ed(, (k)P" (x-2 k) + Ec(]k) (x-2'k) (G. 10)
1-l k=-o k=-(o

where

[()= ( l) (G. II)

These coefficients {d(,), ... ,d(j) are the detail coefficients and the sequence {ca)} and

the approximation coefficients at level I [55]. The lowpass and highpass filter

kernels for the quadratic spline wavelets are:

h(k) = [b5]- ' (k) 2 * b5(k) *p2 (k) (G. 12)

g(k +1)= [b]-'(k) 2 * (-) p (k) (G. 13)

where

[(b)](k)3 =Z- z 2Z +26z+66+26z - +z- 2 (G.

and

p2(k)= 2Z-l [1+3z-1 +3z- 2 + z- 3 ] (G. 15)
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factoring [b(k) ]i gives

(1b - ( a )(12 -) 2 )(1 - a2 [a )( -aa a2 ) ]

(G. 16)

where a =-0.04309 and at=-0.43057.

The discrete B-splines are obtained by sampling the corresponding continuous

functions b"(k) = /f(k) with the starting condition:

bo(k) = {1 forO<k< (G.17)
l0o otherwise

The discrete case has a similar convolution relation to the continuous case:

b(k)=bO(k)*bO(k)*...*bO(k)*b"(k), n+ltimes (G. 18)

The interpolating function q"(x) of the form:

f(k) = 0" (k) = c(i)b" (k-i) (G. 19)
I= -m

and can also be described by the convolution

f(k) = b"(k) * c(k) (G. 20)

b"(k) is the FIR operator and referred to as the indirect spline filter of order n. The

additional convolution in (E.20) by {b"(k)} guarantees that the discrete B-spline

provides the same values as the continuous basis functions at the node points [k = -

c... +oo. The Z-transform of (E.20) gives

F(z) = B(z)C(z) (G. 21)
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where

or

B"(z)= b"n(k)z - k (G. 22)
k=-c

The spline coefficients, c(k), are determined by inverse filtering:

S(z) =[B (z)]-' (G. 23)

A fast algorithm may be used to calculate the B-spline filter coefficients, c(k) for the

quadratic case (where n= 2) using:

c+ (k)= f(k)+bc(k - 1) (k = 2,...,K) (G. 24)

c-(k)=f(k)+b,c-(k+1) (k=K-1,...,1) (G. 25)

c(k) = bo(c (k) + c-(k) - f(k)) (G. 26)

where

b 0 = -8a/(1- a 2 ) (G. 27)

b, = a = - 3 (G. 28)

The wavelet coefficients are then calculated from this for I levels by filtering and

decimating by 2:

c(i+,)(k)= [h(k) * c( (k)] , 2 (G. 29)

d,+,(k ) = [g(k) * c((k)] 4 2 for i = 0,1,2,...,I -1 (G. 30)

where h and g are the lowpass and highpass filter kernels for decomposition [50, 55].

The z-transform of the sampled quadratic B-spline is

B2(z ) z+6+z (G. 31)
8

The transfer function of the inverse (stable symmetric IIR) filter is given as:
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wr- a 1-az -oz 1) iS2(z)I = l ~--- lI (G. 32)

where a = f8 -3 . The impulse response of the filter is:

8a alk2 (G. 33)1-a 2 (G.33)

[55].
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